【題目】閱讀以下材料,并解決相應(yīng)的問題.
巧設(shè)密碼
在日常生活中,微信支付、取款、上網(wǎng)等都需要密碼.有一種用因式分解生成密碼的程序,方便記憶.例如:對(duì)于多項(xiàng)式,因式分解的結(jié)果是.若取,,則各個(gè)因式的值分別是,,,于是就可以把“”作為一個(gè)六位數(shù)的密碼
問題解決:
(1)按材料中的原理,若取,,生成的密碼是_______;
(2)若將程序修改為:整式因式分解的結(jié)果,取,時(shí)(來源年月出生),用上述方法產(chǎn)生的密碼是多少?(寫出一種即可)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、C分別在反比例函數(shù)y=和y=上,連接OB,OC,BC且OB⊥OC,則的值為( )
A.5B.1C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥BC于點(diǎn)D,過點(diǎn)C作⊙O的切線,交OD的延長(zhǎng)線于點(diǎn)E,連接BE.
(1)求證:BE與⊙O相切;
(2)設(shè)OE交⊙O于點(diǎn)F,若DF=1,BC=2,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷售這種冰箱的利潤(rùn)是y元,請(qǐng)寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(―2,0),(0,1),⊙C的圓心坐標(biāo)為(0,―1),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線AD與y軸交于點(diǎn)E,則△ABE面積的最大值是( )
A. 4 B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為□ABCD的對(duì)稱中心,點(diǎn)A的坐標(biāo)為(-2,-2),AB=5,AB//x軸,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,將□ABCD沿y軸向下平移,使點(diǎn)C的對(duì)應(yīng)點(diǎn)C′落在反比例函數(shù)的圖象上,則平移過程中線段AC掃過的面積為( )
A.10B.18C.20D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C坐標(biāo)為(﹣1,0),tan∠ACO=2.一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)B、C,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)B.
(1)求一次函數(shù)關(guān)系式和反比例函數(shù)的關(guān)系式;
(2)當(dāng)x<0時(shí),kx+b﹣<0的解集為 ;
(3)若x軸上有兩點(diǎn)E、F,點(diǎn)E在點(diǎn)F的左邊,且EF=1.當(dāng)四邊形ABEF周長(zhǎng)最小時(shí),請(qǐng)直接寫出點(diǎn)E的橫坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D、E是以AB為直徑的圓O上兩點(diǎn),且∠AED=45°,過點(diǎn)D作DC∥AB.
(1)請(qǐng)判斷直線CD與圓O的位置關(guān)系,并說明理由;
(2)若圓O的半徑為,,求AE的長(zhǎng);
(3)過點(diǎn)D作,垂足為F,直接寫出線段AE、BE、DF之間的數(shù)量關(guān)系 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com