【題目】閱讀下列文字:我們知道對(duì)于一個(gè)圖形,通過不同的方法計(jì)算圖形的面積時(shí),可以得到一個(gè)數(shù)學(xué)等式,例如由圖a可以得到a2+3ab+2b2=(a+2b)(a+b).請(qǐng)回答下列問題:
(1)寫出圖b中所表示的數(shù)學(xué)等式是 .
(2)試畫出一個(gè)長(zhǎng)方形,使得用不同的方法計(jì)算它的面積時(shí),能得到2a2+3ab+b2=(2a+b)(a+b).
(3)課本68頁練一練,有一題:如圖c,用四塊完全相同的長(zhǎng)方形拼成正方形,用不同的方法,計(jì)算圖中陰影部分的面積,你能發(fā)現(xiàn)什么?(用含有x、y的多少表示) .
(4)通過上述的等量關(guān)系,我們可知:
當(dāng)兩個(gè)正數(shù)的和一定時(shí),它們的差的絕對(duì)值越小則積越(填“大”或“小”).
當(dāng)兩個(gè)正數(shù)的積一定時(shí),它們的差的絕對(duì)值越小則和越(填“大”或“小”).
(5)利用上面得出的結(jié)論,對(duì)于正數(shù)x,求:
①代數(shù)式:2x+ 的最小值是;
②代數(shù)式:x(6﹣x)的最大值是 .
【答案】
(1)2a2+5ab+2b2=(2a+b)(a+2b);
(2)
解:根據(jù)題意畫出圖形,如圖所示:
(3)4xy=(x+y)2﹣(x﹣y)2
(4)大;小
(5)4;9
【解析】(1)圖b面積有兩種求法,可以由長(zhǎng)為2a+b,寬為a+2b的矩形面積求出,也可以由兩個(gè)邊長(zhǎng)為a與邊長(zhǎng)為b的兩正方形,及4個(gè)長(zhǎng)為a,寬為b的矩形面積之和求出,表示即可;(2)根據(jù)題意畫出相應(yīng)的圖形,如圖所示;(3)陰影部分的面積可以由邊長(zhǎng)為x+y的大正方形的面積減去邊長(zhǎng)為x﹣y的小正方形面積求出,也可以由4個(gè)長(zhǎng)為x,寬為y的矩形面積之和求出,表示出即可;(4)兩正數(shù)和一定,則和的平方一定,根據(jù)等式4xy=(x+y)2﹣(x﹣y)2 , 得到被減數(shù)一定,差的絕對(duì)值越小,即為減數(shù)越小,得到差越大,即積越大;當(dāng)兩正數(shù)積一定時(shí),即差一定,差的絕對(duì)值越小,得到減數(shù)越小,可得出被減數(shù)越。5)利用上述的結(jié)論可得出所求的最大值及最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,F(xiàn)H平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A(﹣3,2)關(guān)于x軸的對(duì)稱點(diǎn)A′的坐標(biāo)為( )
A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4),B(1,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)在旋轉(zhuǎn)過程中點(diǎn)B所經(jīng)過的路徑長(zhǎng)為 ;
(3)求在旋轉(zhuǎn)過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測(cè)出旗桿AB的高度,在旗桿前的平地上選擇一點(diǎn)C,測(cè)得旗桿頂部A的仰角為45°,在C、B之間選擇一點(diǎn)D(C、D、B三點(diǎn)共線),測(cè)得旗桿頂部A的仰角為75°,且CD=8m.
(1)求點(diǎn)D到CA的距離;
(2)求旗桿AB的高.
(注:結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)己知,如圖1,△ABC是⊙O的內(nèi)接正三角形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A,PB,PC三者之間有何數(shù)量關(guān)系,并給予證明.
(2)如圖2,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A,PB,PC三者之間有何數(shù)量關(guān)系,并給予證明.
(3)如圖3,六邊形ABCDEF是⊙O的內(nèi)接正六邊形,點(diǎn)P為弧BC上一動(dòng)點(diǎn),請(qǐng)?zhí)骄縋A、PB、PC三者之間有何數(shù)量關(guān)系,直接寫出結(jié)論不需證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com