【題目】二次函數(shù)y=x2的圖象如圖,點O為坐標(biāo)原點,點A在y軸的正半軸上,點B、C在二次函數(shù)y=x2的圖象上,四邊形OBAC為菱形,且∠OBA=120°,則菱形OBAC的面積為 .
【答案】2
【解析】
試題分析:連結(jié)BC交OA于D,如圖,根據(jù)菱形的性質(zhì)得BC⊥OA,∠OBD=60°,利用含30度的直角三角形三邊的關(guān)系得OD=BD,設(shè)BD=t,則OD=t,B(t,t),利用二次函數(shù)圖象上點的坐標(biāo)特征得t2=t,解得t1=0(舍去),t2=1,則BD=1,OD=,然后根據(jù)菱形性質(zhì)得BC=2BD=2,OA=2OD=2,再利用菱形面積公式計算即可.
解:連結(jié)BC交OA于D,如圖,
∵四邊形OBAC為菱形,
∴BC⊥OA,
∵∠OBA=120°,
∴∠OBD=60°,
∴OD=BD,
設(shè)BD=t,則OD=t,
∴B(t,t),
把B(t,t)代入y=x2得t2=t,解得t1=0(舍去),t2=1,
∴BD=1,OD=,
∴BC=2BD=2,OA=2OD=2,
∴菱形OBAC的面積=×2×2=2.
故答案為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P(3,﹣4)在第 象限,與x軸距離是 ,與y軸距離是 ,與原點距離是 ;點P關(guān)于x軸對稱的點Q坐標(biāo)為 ,P關(guān)于y軸對稱點M坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△A′B′C中,∠A=∠A′,CD與C′D′分別為AB邊和A′B′邊上的中線,再從以下三個條件:①AB=A′B′;②AC=A′C′;③CD=C′D′中任取兩個為題設(shè),另一個作為結(jié)論,請寫出一個正確的命題:________(用題序號寫).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為提倡節(jié)約用水,采取分段收費.若每戶每月用水不超過20m3,每立方米收費2元;若用水超過20m3,超過部分每立方米加收1元.小明家5月份交水費64元,則他家該月用水 m3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列填空.如右圖,已知AD⊥BC,EF⊥BC,∠1=∠2. 求證: DG∥BA.
證明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90° ( )
∴ ∥ ( )
∴∠1=∠BAD ( )
又∵∠1=∠2 (已知)
∴ (等量代換)
∴DG∥BA. ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB∥DC,AB=16cm,CD=10cm,AD=5cm DE⊥AB,垂足為E,點P從點A出發(fā),以2cm/秒的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/秒的速度沿CD向終點D運動(P,Q兩點中,有一個點運動到終點時,所有運動即終止),設(shè)P,Q同時出發(fā)并運動了t秒.
(1)當(dāng)四邊形EPQD為矩形時,求t的值.
(2)當(dāng)以點E、P、C、Q為頂點的四邊形是平行四邊形時,求t的值;
(3)探索:是否存在這樣的t值,使三角形PDQ是以PD為腰的等腰三角形?若存在,求出t的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,點E為邊DC的中點,連結(jié)AE,將△ADE沿著AE翻折,使點D落在正方形內(nèi)的點F處,連結(jié)BF、CF,則S△BFC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中有2個紅球、3個綠球和5個白球,這些球除顏色外都相同,將球攪勻,從中任意摸出1個球.
(1)會出現(xiàn)哪些可能的結(jié)果? ;
(2)你認為摸到哪種顏色球的可能性最大? ;
(3)怎樣改變袋子中紅球和白球的個數(shù),使摸到這兩種顏色球的概率相同?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com