【題目】拋物線y=(m1x2+2x+m圖象與坐標(biāo)軸有且只有2個(gè)交點(diǎn),則m_____

【答案】120

【解析】

由于拋物線y=(m1x2+2x+m圖象與坐標(biāo)軸有且只有2個(gè)交點(diǎn),而拋物線與y軸始終有一個(gè)交點(diǎn),所以得到與x軸只有一個(gè)交點(diǎn),那么判別式為0,由此可以得到關(guān)于m的方程,解方程即可求出m的值,另外當(dāng)m=0時(shí)與x軸的一個(gè)交點(diǎn)(0,0)正好是與y軸的交點(diǎn),即可求出答案.

∵拋物線y=(m1)x2+2x+12m圖象與坐標(biāo)軸有且只有2個(gè)交點(diǎn),

而拋物線與y軸始終有一個(gè)交點(diǎn),

∴與x軸只有一個(gè)交點(diǎn),

∴△=42(m1)m=0,

m=12,

另外當(dāng)m=0時(shí),y=x+2xx軸的一個(gè)交點(diǎn)(0,0)正好是與y軸的交點(diǎn),

即此時(shí)也與坐標(biāo)軸只有兩個(gè)交點(diǎn),

故答案為:m=120.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=2x2﹣4x﹣6.

(1)求這個(gè)二次函數(shù)圖象的頂點(diǎn)坐標(biāo)及對稱軸;

(2)指出該圖象可以看作拋物線y=2x2通過怎樣平移得到?

(3)在給定的坐標(biāo)系內(nèi)畫出該函數(shù)的圖象,并根據(jù)圖象回答:當(dāng)x取多少時(shí),yx增大而減;當(dāng)x取多少時(shí),y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點(diǎn),交y 軸于點(diǎn)C

1)求拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)為拋物線上一點(diǎn),是否存在點(diǎn)使,若存在請直接給出點(diǎn)坐標(biāo);若不存在請說明理由.

3)將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn),與拋物線交于另一點(diǎn),求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】M、N兩同學(xué)在做一種游戲,規(guī)定每人隨機(jī)伸出一只手中的1根至5根手指,兩人伸出的手指的和若為23,4,8,910,則M勝;若和為5,6,7,則N.

(1)用畫樹狀圖法分別求M、N兩人獲勝的概率;

(2)上面的游戲公平嗎?若不公平,你能否設(shè)計(jì)一個(gè)方案使游戲絕對公平?若能,寫出方案;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺設(shè)備成本價(jià)為30萬元,經(jīng)過市場調(diào)研發(fā)現(xiàn),每臺售價(jià)為40萬元時(shí),年銷售量為600;每臺售價(jià)為45萬元時(shí),年銷售量為550.假定該設(shè)備的年銷售量y(單位:)和銷售單價(jià)(單位:萬元)成一次函數(shù)關(guān)系.

(1)求年銷售量與銷售單價(jià)的函數(shù)關(guān)系式;

(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷售單價(jià)不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設(shè)備的銷售單價(jià)應(yīng)是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格銷售,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.

1)求平均每天銷售量箱與銷售價(jià)/箱之間的函數(shù)關(guān)系式.

2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(jià)(元/箱)之間的函數(shù)關(guān)系式.

3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:三角形ABC內(nèi)接于圓O,∠BAC∠ABC的角平分線AE,BE相交于點(diǎn)E,延長AE交外接圓O于點(diǎn)D,連接BD,DC,且∠BCA=60°

1)求∠BED的大;

2)證明:△BED為等邊三角形;

3)若∠ADC=30°,圓O的半徑為r,求等邊三角形BED的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,cm, cm,中,,cm,cmEFBC上,保持不動(dòng),并將1cm/s的速度向點(diǎn)C運(yùn)動(dòng),移動(dòng)開始前點(diǎn)F與點(diǎn)B重合,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),停止移動(dòng).邊DEAB相交于點(diǎn)G,連接FG,設(shè)移動(dòng)時(shí)間為ts).

1從移動(dòng)開始到停止,所用時(shí)間為________s;

2)當(dāng)DE平分AB時(shí),求t的值;

3)當(dāng)為等腰三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D在⊙O的直徑AB延長線上,點(diǎn)C在⊙O上,過點(diǎn)DEDAD,與AC的延長線相交于點(diǎn)E,且CDDE

1)求證:CD為⊙O的切線;

2)若AB8,且BCCE時(shí),求BD的長.

查看答案和解析>>

同步練習(xí)冊答案