(2003•鎮(zhèn)江)已知拋物線y=-x2+(k+1)+3,當(dāng)x<1時(shí),y隨著x的增大而增大,當(dāng)x>1時(shí),y隨著x的增大而減小.
(1)求k的值及拋物線的解析式;
(2)設(shè)拋物線與x軸交于A、B兩點(diǎn)(A在B的左邊),拋物線的頂點(diǎn)為P,試求出A、B、P三點(diǎn)的坐標(biāo),并在下面的直角坐標(biāo)系中畫出這條拋物線;
(3)求經(jīng)過P、A、B三點(diǎn)的圓的圓心O‘的坐標(biāo);
(4)設(shè)點(diǎn)G(0,m)是y軸的一個(gè)動(dòng)點(diǎn).
①當(dāng)點(diǎn)G運(yùn)動(dòng)到何處時(shí),直線BG是⊙O‘的切線并求出此時(shí)直線BG的解析式;
②若直線BG與⊙O‘相交,且另一交點(diǎn)為D,當(dāng)m滿足什么條件時(shí),點(diǎn)D在x軸的下方.
【答案】分析:(1)根據(jù)題意可知拋物線的對稱軸為x=1,根據(jù)對稱軸的公式即可求出k的值,也就能求出拋物線的解析式.
(2)根據(jù)(1)得出的拋物線的解析式即可求出A、B、P的坐標(biāo).
(3)由于圓和拋物線都是軸對稱圖形,因此圓心O′必在AB的垂直平分線即拋物線的對稱軸上,因此可作出拋物線的對稱軸設(shè)對稱軸與x軸和圓O′的交點(diǎn)分別為M、N.根據(jù)相交弦定理即可求出MN的長,進(jìn)而可求出圓的半徑和圓心O′的坐標(biāo).
(4)①可先過B作圓O′的切線,交y軸于G,要求出直線BG的解析式,就必須求出G點(diǎn)的坐標(biāo),首先要求出OG的長,可設(shè)直線BO′交y軸于E,根據(jù)B,O′兩點(diǎn)的坐標(biāo)可求出直線BO′的解析式進(jìn)而可求出E點(diǎn)的坐標(biāo),即OE的長,在直角三角形EBG中,根據(jù)射影定理即可求出OG的長,得出G點(diǎn)坐標(biāo)后,可用待定系數(shù)法求出直線BG的解析式.
②根據(jù)①中G點(diǎn)的坐標(biāo)即可得出本題的結(jié)論.
解答:解:(1)由題意可知:=1,k=1.
因此拋物線的解析式為y=-x2+2x+3

(2)A(-1,0),B(3,0),P(1,4)

(3)根據(jù)圓和拋物線的對稱性可知:
圓心O′在AB的垂直平分線即拋物線的對稱軸上,
設(shè)拋物線的對稱軸交x軸于M,交⊙O′于N,則有:PM•MN=MA•MB,
∴4•MN=2×2,即MN=1,
因此PN=5,圓O′的半徑為2.5.
因此O′在x軸的上方,坐標(biāo)為(1,).

(4)①過B作⊙O′的切線交y軸于G,
設(shè)直線BO′交y軸于E,
可求得直線BO′的解析式為y=-x+
因此E點(diǎn)的坐標(biāo)為(0,).
∵BG是⊙O′的切線,因此BO′⊥BG,
∴BO2=EO•OG,即9=•OG,
因此OG=4,即G點(diǎn)的坐標(biāo)為(0,-4)
設(shè)直線BG的解析式為y=kx-4.由于直線過B點(diǎn)(3,0),
可得:3k-4=0,k=
因此直線BG的解析式為y=x-4
②-4<m<0.
點(diǎn)評:本題著重考查了二次函數(shù)的性質(zhì)、圓的性質(zhì)、相交弦定理、切線的判定、直線與圓的位置關(guān)系等重要知識點(diǎn),綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2003•鎮(zhèn)江)已知拋物線y=-x2+(k+1)+3,當(dāng)x<1時(shí),y隨著x的增大而增大,當(dāng)x>1時(shí),y隨著x的增大而減。
(1)求k的值及拋物線的解析式;
(2)設(shè)拋物線與x軸交于A、B兩點(diǎn)(A在B的左邊),拋物線的頂點(diǎn)為P,試求出A、B、P三點(diǎn)的坐標(biāo),并在下面的直角坐標(biāo)系中畫出這條拋物線;
(3)求經(jīng)過P、A、B三點(diǎn)的圓的圓心O‘的坐標(biāo);
(4)設(shè)點(diǎn)G(0,m)是y軸的一個(gè)動(dòng)點(diǎn).
①當(dāng)點(diǎn)G運(yùn)動(dòng)到何處時(shí),直線BG是⊙O‘的切線并求出此時(shí)直線BG的解析式;
②若直線BG與⊙O‘相交,且另一交點(diǎn)為D,當(dāng)m滿足什么條件時(shí),點(diǎn)D在x軸的下方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:解答題

(2003•鎮(zhèn)江)已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象相交于(2,1).
(1)分別求這兩個(gè)函數(shù)的解析式;
(2)試判斷點(diǎn)P(-1,5)關(guān)于x軸的對稱點(diǎn)Q是否在一次函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南省中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2003•鎮(zhèn)江)已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象相交于(2,1).
(1)分別求這兩個(gè)函數(shù)的解析式;
(2)試判斷點(diǎn)P(-1,5)關(guān)于x軸的對稱點(diǎn)Q是否在一次函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•鎮(zhèn)江)已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象相交于(2,1).
(1)分別求這兩個(gè)函數(shù)的解析式;
(2)試判斷點(diǎn)P(-1,5)關(guān)于x軸的對稱點(diǎn)Q是否在一次函數(shù)的圖象上.

查看答案和解析>>

同步練習(xí)冊答案