【題目】如圖,在直角坐標系中,正方形ABCO的點B坐標(3,3),點A、C分別在y軸、x軸上,對角線AC上一動點E,連接BE,過E作DE⊥BE交OC于點D.若點D坐標為(2,0),則點E坐標為__________.
【答案】(1,2)
【解析】分析:證出EH=BF,由ASA證明△BEF≌△EDH,得出BE=DE即可,連接OE,由正方形的對稱性質(zhì)得:OE=BE,證出OE=DE,由等腰三角形的性質(zhì)得出OH=DH=OD=1,由全等三角形的性質(zhì)得出EF=DH=1,求出FH=OA=3,得出EH=2,從而得出點E的坐標.
詳解:∵四邊形ABCO是正方形,∴AB∥OC,∠OAB=∠AOC=90°,∠OAC=∠BAC=∠OCA=45°,OA∥BC.
∵FH∥AB,∴FH∥OA,∴FH⊥OC,∠HEC=∠OAC=45°=∠OCA,∠BFH=∠OAB=90°,∠DHE=∠AOC=90°,∴EH=CH=BF.
∵DE⊥BE,FH⊥AB,∴由角的互余關(guān)系得:∠EBF=∠DEH.在△BEF和△EDH中,∵∠BFE=∠EHD,BF=EH,∠EBF=∠DEH,∴△BEF≌△EDH(ASA),∴BE=DE.
連接OE,如圖1所示.
∵點D坐標為(2,0),∴OD=2,由正方形的對稱性質(zhì)得:OE=BE.
∵BE=DE,∴OE=DE.
∵FH⊥OC,∴OH=DH=OD=1.
∵△BEF≌△EDH,∴EF=DH=1.
∵FH=OA=3,∴EH=3﹣1=2,∴點E的坐標為(1,2).
故答案為:(1,2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,請在下列四個關(guān)系中,選出兩個恰當?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,O是BD的中點,且AD=8,BD=12,AC=20,∠ADB=90°.求BC的長和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一點,⊙O交AB于點D,交BC延長線于點E.連接ED,交AC于點G,且AG=AD.
(1)求證:AB與⊙O相切;
(2)設⊙O與AC的延長線交于點F,連接EF,若EF∥AB,且EF=5,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的運算程序中,若開始輸入的x值為100,我們發(fā)現(xiàn)第1次輸出的結(jié)果為50,第2次輸出的結(jié)果為25,…,第2018次輸出的結(jié)果為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個車間接到加工一批零件的任務,從開始加工到完成這項任務共用了9天.其間,乙車間在加工2天后停止加工,引入新設備后繼續(xù)加工,直到與甲車間同時完成這項任務為止,設甲、乙兩個車間各自加工零件總數(shù)y(單位:件)與加時間x(單位:天)的對應關(guān)系如圖1所示,由工廠統(tǒng)計數(shù)據(jù)可知,甲車間與乙車間加工零件總數(shù)之差z(單位:件)與加時間x(單位:天)的對應關(guān)系如圖2所示,請根據(jù)圖象提供的信息回答:
圖中的值是__________;
第_________天時,甲、乙兩個車間加工零件總數(shù)相同.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了深化改革,某校積極開展校本課程建設,計劃成立“文學鑒賞”、“科學實驗”、“音樂舞蹈”和“手工編織”等多個社團,要求每位學生都自主選擇其中一個社團.為此,隨機調(diào)查了本校各年級部分學生選擇社團的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(不完善):
根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)求次調(diào)查的學生總?cè)藬?shù)及a,b,c的值;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1200名學生,試估計全校選擇“科學實驗”社團的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x -2mx(m為常數(shù)),當-1≤x≤2時,函數(shù)y的最小值為-2,則m的值是( )
A. B. C. 或 D. -或
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com