【題目】如圖,正方形ABCD中,CD=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.
(1)求證:①△ABG≌△AFG; ②求GC的長(zhǎng);
(2)求△FGC的面積.
【答案】(1)①見解析②3(2)3.6
【解析】
試題分析:(1)①利用翻折變換對(duì)應(yīng)邊關(guān)系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;
②利用勾股定理得出GE2=CG2+CE2,進(jìn)而求出BG即可;
(2)首先過C作CM⊥GF于M,由勾股定理以及由面積法得,CM=2.4,進(jìn)而得出答案
解:(1)①在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,
∵將△ADE沿AE對(duì)折至△AFE,
∴AD=AF,DE=EF,∠D=∠AFE=90°,
∴AB=AF,∠B=∠AFG=90°,
又∵AG=AG,
在Rt△ABG和Rt△AFG中,
,
∴△ABG≌△AFG(HL);
②∵CD=3DE
∴DE=2,CE=4,
設(shè)BG=x,則CG=6﹣x,GE=x+2
∵GE2=CG2+CE2
∴(x+2)2=(6﹣x)2+42,
解得x=3,
∴CG=6﹣3=3;
(2)如圖,過C作CM⊥GF于M,
∵BG=GF=3,
∴CG=3,EC=6﹣2=4,
∴GE==5,
CMGE=GCEC,
∴CM×5=3×4,
∴CM=2.4,
∴S△FGC=GF×CM=×3×2.4=3.6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小莉出生于2017年12月份,他們的出生日期不是同一天,但都是星期二,且小明比小莉出生早,兩人出生日期之和是24,那么小莉的出生日期是 ( )
A. 5號(hào) B. 10號(hào) C. 16號(hào) D. 19號(hào)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.(x+y)2=x2+y2
B.(x﹣y)2=x2﹣2xy﹣y2
C.(x+1)(x﹣1)=x2﹣1
D.(x﹣1)2=x2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知tan∠EOF=2,點(diǎn)C在射線OF上,OC=12.點(diǎn)M是∠EOF內(nèi)一點(diǎn),MC⊥OF于點(diǎn)C,MC=4.在射線CF上取一點(diǎn)A,連結(jié)AM并延長(zhǎng)交射線OE于點(diǎn)B,作BD⊥OF于點(diǎn)D.
(1)當(dāng)AC的長(zhǎng)度為多少時(shí),△AMC和△BOD相似;
(2)當(dāng)點(diǎn)M恰好是線段AB中點(diǎn)時(shí),試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當(dāng)S△AMC=S△BOC時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從十邊形的一個(gè)頂點(diǎn)出發(fā),可以引m條對(duì)角線,這些對(duì)角線可以把這個(gè)十邊形分成n個(gè)三角形,則m+n=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東營(yíng)市出租車的收費(fèi)標(biāo)準(zhǔn)是:起步價(jià)8元(即行駛距離不超過3千米都需付8元車費(fèi)),超過3千米以后,每增加1千米,加收1.5元(不足1千米按1千米計(jì)).某人從甲地到乙地經(jīng)過的路程是x千米,出租車費(fèi)為15.5元,那么x的最大值是( )
A.11 B.8 C.7 D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com