【題目】(1)計(jì)算

②(π-1)°+-2

(2)解方程

【答案】1,②-2;2

【解析】

(1)①先把各二次根式化為最簡(jiǎn)二次根式,然后把括號(hào)內(nèi)合并后進(jìn)行二次根式的除法運(yùn)算

根據(jù)零指數(shù)冪和負(fù)整數(shù)指數(shù)冪的意義以及絕對(duì)值的意義化簡(jiǎn)然后合并即可;

(2)先移項(xiàng),根據(jù)方程的系數(shù)特點(diǎn)利用十字相乘法把方程左邊因式分解,然后利用因式分解法解答

可以提取公因式(x﹣3),把方程左邊進(jìn)行因式分解,利用因式分解法解答

1)① 原式

;

②原式=12+(5)-2

3352

2;

2)①移項(xiàng)得:=0

因式分解得:(x-1) (2x-1) =0,

②提取公因式,得:(x-3)(x-3+4x)=0

整理,得:(x-3)(5x-3)=0

【點(diǎn)睛本題考查了二次根式的混合運(yùn)算、實(shí)數(shù)的混合運(yùn)算以及解一元二次方程的方法熟練掌握運(yùn)算法則和一元二次方程的解法是解題的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn),分別相切于點(diǎn)和點(diǎn).點(diǎn)和點(diǎn)分別是上的動(dòng)點(diǎn),沿平移.的半徑為,.下列結(jié)論錯(cuò)誤的是(

A. B. 的距離為

C. ,則相切 D. 相切,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有兩枚質(zhì)地均勻的正方體骰子,每枚骰子的六個(gè)面上都分別標(biāo)有數(shù)字1、2、3、4、5、6.同時(shí)投擲這兩枚骰子,以朝上一面所標(biāo)的數(shù)字為擲得的結(jié)果,那么所得結(jié)果之和為9的概率是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【提出問(wèn)題】

1)如圖1,在等邊ABC中,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊AMN,連結(jié)CN.求證:ABC=ACN

【類(lèi)比探究】

2)如圖2,在等邊ABC中,點(diǎn)MBC延長(zhǎng)線(xiàn)上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論ABC=ACN還成立嗎?請(qǐng)說(shuō)明理由.

【拓展延伸】

3)如圖3,在等腰ABC中,BA=BC,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)BC),連結(jié)AM,以AM為邊作等腰AMN,使頂角AMN=ABC.連結(jié)CN.試探究ABCACN的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,定義:在直角三角形ABC中,銳角α的鄰邊與對(duì)邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問(wèn)題:

1ctan30°= ;

2)如圖,已知tanA=,其中∠A為銳角,試求ctanA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)y=mx2+(5m+3)x+4m(m為常數(shù)且m≠0)有以下三種說(shuō)法:

①不論m為何值,函數(shù)圖象一定過(guò)定點(diǎn)(﹣1,﹣3);

②當(dāng)m=﹣1時(shí),函數(shù)圖象與坐標(biāo)軸有3個(gè)交點(diǎn);

③當(dāng)m<0,x≥﹣時(shí),函數(shù)yx的增大而減;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一袋裝有編號(hào)為1,2,3的三個(gè)形狀、大小、材質(zhì)等相同的小球,從袋中隨意摸出1個(gè)球,記事件A摸出的球編號(hào)為奇數(shù),隨意拋擲一個(gè)之地均勻正方體骰子,六個(gè)面上分別寫(xiě)有1﹣66個(gè)整數(shù),記事件B向上一面的數(shù)字是3的整數(shù)倍,請(qǐng)你判斷等式“P(A)=2P(B)”是否成立,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB與⊙O相切于點(diǎn)C,OA,OB分別交⊙O于點(diǎn)D,E,弧CD=CE.

(1)求證:OA=OB;

(2)已知∠A=30°,OA=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),直線(xiàn)x軸交于點(diǎn)A、與y軸交于點(diǎn)D,以AD為腰,以x軸為底作等腰梯形ABCD(ABCD),且等腰梯形的面積是8,拋物線(xiàn)經(jīng)過(guò)等腰梯形的四個(gè)頂點(diǎn).

圖(1)

(1) 求拋物線(xiàn)的解析式;

(2) 如圖(2)若點(diǎn)PBC上的—個(gè)動(dòng)點(diǎn)(與B、C不重合),以P為圓心,BP長(zhǎng)為半徑作圓,與軸的另一個(gè)交點(diǎn)為E,作EFAD,垂足為F,請(qǐng)判斷EFP的位置關(guān)系,并給以證明;

圖(2)

(3) 在(2)的條件下,是否存在點(diǎn)P,使Py軸相切,如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案