【題目】某公司生產(chǎn)的一種商品其售價是成本的1.5倍,當(dāng)售價降低5元時商品的利潤率為25%.若不進(jìn)行任何推廣年銷售量為1萬件.為了獲得更好的利益,公司準(zhǔn)備拿出一定的資金做推廣,根據(jù)經(jīng)驗,每年投入的推廣費(fèi)x萬元時銷售量y(萬件)是x的二次函數(shù):當(dāng)x為1萬元時,y是1.5(萬件).當(dāng)x為2萬元時,y是1.8(萬件).
(1)求該商品每件的的成本與售價分別是多少元?
(2)求出年利潤與年推廣費(fèi)x的函數(shù)關(guān)系式;
(3)如果投入的年推廣告費(fèi)為1萬到3萬元(包括1萬和3萬元),問推廣費(fèi)在什么范同內(nèi),公司獲得的年利潤隨推廣費(fèi)的增大而增大?
【答案】(1)該商品每件的的成本與售價分別是20元、30元;(2);(3)推廣費(fèi)在1萬元到2.5萬元(包括1萬元和2.5萬元)時,公司獲得的年利潤隨推廣費(fèi)的增大而增大.
【解析】
(1)根據(jù)售價成本價=利潤,成本價乘以利潤率=利潤,列方程即可求解;
(2)根據(jù)每年投入的推廣費(fèi)x萬元時銷售量y(萬件)是x的二次函數(shù),代入所給數(shù)據(jù)即可求解;
(3)根據(jù)年利潤=單件利潤乘以銷售量再減去推廣費(fèi)即可列出二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)即可確定推廣費(fèi)的取值范圍.
(1)設(shè)該商品每件的的成本為a元,則售價為元1.5a元,
根據(jù)題意,得
1.5a﹣5﹣a=25%a,
解得a=20,則1.5a=30,
答:該商品每件的的成本與售價分別是20元、30元.
(2)根據(jù)題意每年投入的推廣費(fèi)x萬元時銷售量y(萬件)是x的二次函數(shù),
設(shè)y=ax2+bx+c
∵不進(jìn)行任何推廣年銷售量為1萬件,即當(dāng)x=0時,y=1(萬件),
當(dāng)x為1萬元時,y是1.5(萬件).當(dāng)x為2萬元時,y是1.8(萬件).
∴
解得
所以銷售量y與推廣費(fèi)x的函數(shù)解析式為.
所以設(shè)公司獲得的年利潤為w萬元,
答:年利潤與年推廣費(fèi)x的函數(shù)關(guān)系式為w=10y=﹣x2+6x+10.
(3)公司獲得的年利潤為w萬元,根據(jù)題意,得
w=10y﹣x
=10(﹣x2+x+1)﹣x
=﹣x2+5x+10
=﹣(x﹣)2+
∵1≤x≤3,
∴當(dāng)1≤x≤2.5時,w隨x的增大而增大,
答:推廣費(fèi)在1萬元到2.5萬元(包括1萬元和2.5萬元)時,公司獲得的年利潤隨推廣費(fèi)的增大而增大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(發(fā)現(xiàn))如圖,點E,F分別在正方形ABCD的邊BC,CD上,連接EF.因為AB=AD,所以把ΔABE繞A逆時針旋轉(zhuǎn)90°至ΔADG,可使AB與AD重合.因為∠CDA=∠B=90°,所以∠FDG=180°,所以F、D、G共線.
如果__________(填一個條件),可得ΔAEF≌ΔAGF.經(jīng)過進(jìn)一步研究我們可以發(fā)現(xiàn):當(dāng)BE,EF,FD滿足__________時,∠EAF=45°.
(應(yīng)用)
如圖,在矩形ABCD中,AB=6,AD=m,點E在邊BC上,且BE=2.
(1)若m=8,點F在邊DC上,且∠EAF=45°(如圖),求DF的長;
(2)若點F在邊DC上,且∠EAF=45°,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺在它的娛樂性節(jié)目中每期抽出兩名場外幸運(yùn)觀眾,有一期甲、乙兩人被抽為場外幸運(yùn)觀眾,他們獲得了一次抽獎的機(jī)會,在如圖所示的翻獎牌的正面4個數(shù)字中任選一個,選中后翻開,可以得到該數(shù)字反面的獎品,第一個人選中的數(shù)字第二個人不能再選擇了.
(1)如果甲先抽獎,那么甲獲得“手機(jī)”的概率是多少?
(2)小亮同學(xué)說:甲先抽獎,乙后抽獎,甲、乙兩人獲得“手機(jī)”的概率不同,且甲獲得“手機(jī)”的概率更大些.你同意小亮同學(xué)的說法嗎?為什么?請用列表或畫樹狀圖分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,E是邊BC上一點,過點E作對角線AC的平行線,交AB于F,交DA和DC的延長線于點G,H.
(1)求證:△AFG≌△CHE;
(2)若∠G=∠BAC,則四邊形ABCD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,將對角線AC繞對角線交點O旋轉(zhuǎn),分別交邊AD、BC于點E、F,點P是邊DC上的一個動點,且保持DP=AE,連接PE、PF,設(shè)AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代數(shù)式表示)
(2)求△PEF面積的最小值;
(3)在運(yùn)動過程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考讓同學(xué)們感覺壓力較大,初三某班班主任想通過課間播放音樂來幫助學(xué)生緩解壓力,采用全面調(diào)查的方法調(diào)查了學(xué)生對音樂類型的興趣愛好,結(jié)果全班學(xué)生選擇集中在流行音樂、民族音樂、搖滾音樂和輕音樂四種音樂類型.根據(jù)調(diào)查的結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)求該班學(xué)生總?cè)藬?shù),并把條形統(tǒng)計圖補(bǔ)充完整;
(2)求扇形統(tǒng)計圖中的值和表示流行音樂的扇形圓心角的度數(shù);
(3)班主任每天挑選出四種類型音樂各一首放在一個播放器內(nèi),每次隨機(jī)播放兩首不同音樂,請用畫樹狀圖或列表的方法求出某次恰好播放民族音樂和輕音樂的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖①,矩形的對角線交于點,且,點為線段上任意一點,以為邊作等邊三角形,連接,則與之間的數(shù)量關(guān)系是 ;
(2)類比延伸
如圖②,在正方形中,點為邊上任意一點,以為邊作正方形,為正方形的中心,連接,直接寫出與的數(shù)量關(guān)系為 ;
(3)拓展遷移
如圖③,在菱形中,,點為邊上一點,以為對角線作菱形,滿足,連接,猜想與的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位要將一份宣傳資料進(jìn)行批量印刷.在甲印刷廠,在收取100元制版費(fèi)的基礎(chǔ)上,每份收費(fèi)0.5元;在乙印刷廠,在收取40元側(cè)版費(fèi)的基礎(chǔ)上,每份收費(fèi)0.7元.設(shè)該單位要印刷此宣傳資料份(為正整數(shù)).
(Ⅰ)根據(jù)題意,填寫下表:
印劇數(shù)量(份) | 150 | 250 | 350 | 450 | … |
甲印刷廠收費(fèi)(元) | 175 | ① | 275 | ② | … |
乙印刷廠收費(fèi)(元) | 145 | 215 | ③ | 355 | … |
(Ⅱ)設(shè)在甲印刷廠收費(fèi)元,在乙印刷廠收費(fèi)元,分別寫出,關(guān)于的函數(shù)解析式;
(Ⅲ)當(dāng)時,在哪家印刷廠花費(fèi)少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都是整數(shù)的點叫做整點,已知點,點是軸正半軸上的點,記內(nèi)部(不包括邊界)的整點個數(shù)為,當(dāng)時,點的橫坐標(biāo)的取值范圍是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com