【題目】在菱形ABCD中,∠BAD,E為對(duì)角線AC上的一點(diǎn)(不與A,C重合),將射線EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)β角之后,所得射線與直線AD交于F點(diǎn).試探究線段EBEF的數(shù)量關(guān)系.

1)如圖1,當(dāng)α=β=90°時(shí),EBEF的數(shù)量關(guān)系為   

2)如圖2,當(dāng)α=60°β=120°時(shí).

①依題意補(bǔ)全圖形;

②探究(1)的結(jié)論是否成立.若成立,請(qǐng)給出證明;若不成立,請(qǐng)舉出反例說明;

3)在此基礎(chǔ)上對(duì)一般的圖形進(jìn)行了探究,設(shè)∠ABE=γ,若旋轉(zhuǎn)后所得的線段EFEB的數(shù)量關(guān)系滿足(1)中的結(jié)論,請(qǐng)直接寫出角α,β,γ滿足的關(guān)系:  

【答案】(1)EB=EF;(2)①見解析;②結(jié)論依然成立EB=EF,證明見解析;(3)α+β=180°或°.

【解析】

(1)EEMADM,ENABN當(dāng)α=β=90°時(shí),菱形ABCD是正方形,可以證明ANEM是正方形,再證明△EMF≌△ENB,即可得出結(jié)論

(2)依題意補(bǔ)全圖形如圖2所示,證法1,利用菱形的性質(zhì)得出,∠DAC=∠BAC,再用角平分線的性質(zhì),得出EMEN進(jìn)而判斷出△EFM≌△EBN即可;

證法2,利用菱形的性質(zhì)直接判斷出△AED≌△AEB,即可得出結(jié)論

(3)直接得出結(jié)論

1)EBEF理由如下

EEMADM,ENABN當(dāng)α=β=90°時(shí),菱形ABCD是正方形,∴∠DAC=∠CAB=45°,∴EM=EN,∴ANEM是正方形,∴∠NEM=90°.

∵∠FEB=90°,∴∠MEF=∠NEB

∵∠EMF=∠ENB=90°,∴△EMF≌△ENB,∴EB=EF

故答案為:EBEF;

(2)補(bǔ)全圖形如圖2所示

結(jié)論依然成立EBEF理由如下

證法1:如圖3.

過點(diǎn)EEMAFM,ENABN

∵四邊形ABCD為菱形,∴∠CAD=∠CAB

EMAF,ENAB,∴∠FME=∠N=90°,EMEN

∵∠BAD=60°,∠BEF=120°,∴∠F+∠ABE=360°﹣∠BAD﹣∠BEF=180°.

∵∠ABE+∠EBN=180°,∴∠F=∠EBN

在△EFM與△EBN中,∵,∴△EFM≌△EBN,∴EFEB;

證法2:如圖4,連接ED

∵四邊形ABCD是菱形,∴ADAB,∠DAC=∠BAE

又∵AEAE,∴△ADE≌△ABE,∴EDEB,∠ADE=∠ABE

又∵∠DAB=60°,∠BEF=120°,∴∠F+∠ABE=180°.

又∵∠ADE+∠FDE=180°,∴∠F=∠FDE,∴EFED,∴EFEB

(3)α+β=180°或°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,AB=6,tan∠ABC=2,點(diǎn)E是射線DA上的一個(gè)動(dòng)點(diǎn),連接CE,將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD,得到對(duì)應(yīng)線段CF

1)求證:BCEDCF;

2)求線段DF的長(zhǎng)度的最小值;

3)如圖2,連接BDEFBDEC、EF于點(diǎn)P、Q.當(dāng)△EPQ是直角三角形時(shí),求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB=DC,點(diǎn)M,N分別是AD,BC的中點(diǎn),點(diǎn)E,F分別是BM,CM的中點(diǎn). 1)求證:四邊形MENF是菱形; 2)當(dāng)四邊形MENF是正方形時(shí),求證:等腰梯形ABCD的高是底邊BC的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形ABC中,∠ACB=90°,D、E是邊AB上兩點(diǎn),且CE所在直線垂直平分線段AD,CD平分∠BCE,BC=2,則AB=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為5,點(diǎn)A的坐標(biāo)為(﹣40),點(diǎn)By軸上,若反比例函數(shù)y=k≠0)的圖象過點(diǎn)C,則該反比例函數(shù)的表達(dá)式為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程ax2+bx+c=0(a≠0)是關(guān)于x的一元二次方程.

(1)直接寫出方程根的判別式;

(2)寫出求根公式的推導(dǎo)過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OAy軸的正半軸上,Cx軸的正半軸上,已知A(0,8)、C(10,0),作∠AOC的平分線交AB于點(diǎn)D,連接CD,過點(diǎn)DDECDOA于點(diǎn)E

(1)求點(diǎn)D的坐標(biāo);

(2)求證:△ADE≌△BCD;

(3)拋物線yx2x+8經(jīng)過點(diǎn)AC,連接AC.探索:若點(diǎn)Px軸下方拋物線上一動(dòng)點(diǎn),過點(diǎn)P作平行于y軸的直線交AC于點(diǎn)M.是否存在點(diǎn)P,使線段MP的長(zhǎng)度有最大值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案