【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA在y軸的正半軸上,C在x軸的正半軸上,已知A(0,8)、C(10,0),作∠AOC的平分線交AB于點(diǎn)D,連接CD,過(guò)點(diǎn)D作DE⊥CD交OA于點(diǎn)E.
(1)求點(diǎn)D的坐標(biāo);
(2)求證:△ADE≌△BCD;
(3)拋物線y=x2﹣x+8經(jīng)過(guò)點(diǎn)A、C,連接AC.探索:若點(diǎn)P是x軸下方拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作平行于y軸的直線交AC于點(diǎn)M.是否存在點(diǎn)P,使線段MP的長(zhǎng)度有最大值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(8,8);(2)詳見(jiàn)解析;(3)存在,P點(diǎn)坐標(biāo)為(5,﹣6).
【解析】
(1)利用角平分線的性質(zhì)以及矩形的性質(zhì)得出∠ADO=∠DOC,以及∠AOD=∠ADO,進(jìn)而得出答案;
(2)利用全等三角形的判定方法(ASA)即可得出答案;
(3)設(shè)P點(diǎn)坐標(biāo)為(t, t2﹣t+8),設(shè)AC所在的直線的函數(shù)關(guān)系式為y=kx+b,根據(jù)A(0,8)、C(10,0),求出AC的解析式,進(jìn)而用t表示出PM的長(zhǎng),利用二次函數(shù)的性質(zhì)求出PM的最值,點(diǎn)P的坐標(biāo)也可以求出.
解:(1)∵OD平分∠AOC,∴∠AOD=∠DOC.
∵四邊形AOCB是矩形,
∴AB∥OC
∴∠AOD=∠DOC
∴∠AOD=∠ADO.
∴OA=AD(等角對(duì)等邊).
∵A點(diǎn)的坐標(biāo)為(0,8),
∴D點(diǎn)的坐標(biāo)為(8,8)
(2)∵四邊形AOCB是矩形,
∴∠OAB=∠B=90°,BC=OA.
∵OA=AD,
∴AD=BC.
∵ED⊥DC
∴∠EDC=90°
∴∠ADE+∠BDC=90°
∴∠BDC+∠BCD=90°.
∴∠ADE=∠BCD.
在△ADE和△BCD中,
∵∠DAE=∠B,AD=BC,∠ADE=∠BCD,
∴△ADE≌△BCD(ASA)
(3)存在,
∵二次函數(shù)的解析式為:,點(diǎn)P是拋物線上的一動(dòng)點(diǎn),
∴設(shè)P點(diǎn)坐標(biāo)為(t, t2﹣t+8)
設(shè)AC所在的直線的函數(shù)關(guān)系式為y=kx+b,
∵A(0,8)、C(10,0),
∴ ,解得
∴直線AC的解析式y(tǒng)=-.
∵PM∥y軸,
∴M(t,-).
∴PM=﹣( t2﹣t+8)+(-)=- (t-5)2+10.
∴當(dāng)t=5時(shí),PM有最大值為10.
∴所求的P點(diǎn)坐標(biāo)為(5,﹣6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,∠BAD=α,E為對(duì)角線AC上的一點(diǎn)(不與A,C重合),將射線EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)β角之后,所得射線與直線AD交于F點(diǎn).試探究線段EB與EF的數(shù)量關(guān)系.
(1)如圖1,當(dāng)α=β=90°時(shí),EB與EF的數(shù)量關(guān)系為 .
(2)如圖2,當(dāng)α=60°,β=120°時(shí).
①依題意補(bǔ)全圖形;
②探究(1)的結(jié)論是否成立.若成立,請(qǐng)給出證明;若不成立,請(qǐng)舉出反例說(shuō)明;
(3)在此基礎(chǔ)上對(duì)一般的圖形進(jìn)行了探究,設(shè)∠ABE=γ,若旋轉(zhuǎn)后所得的線段EF與EB的數(shù)量關(guān)系滿足(1)中的結(jié)論,請(qǐng)直接寫出角α,β,γ滿足的關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,銳角△ABC 中,BC=12,BC 邊上的高 AD=8,矩形 EFGH 的邊 GH在 BC 上,其余兩點(diǎn) E、F 分別在 AB、AC 上,且 EF 交 AD 于點(diǎn) K
(1) 求 的值
(2) 設(shè) EH=x,矩形 EFGH 的面積為 S
① 求 S 與 x 的函數(shù)關(guān)系式
② 請(qǐng)直接寫出 S 的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“十一”黃金周期間,某商店購(gòu)進(jìn)一優(yōu)質(zhì)湖產(chǎn)品,進(jìn)價(jià)為20元/千克,售價(jià)不低于20元/千克,且不超過(guò)32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該湖產(chǎn)品一天的銷售量y(千克)與該天的售價(jià)x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價(jià)(x)(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)填空:若這種湖產(chǎn)品的售價(jià)為30元/千克,則該湖產(chǎn)品的銷售量是 .
(2)如果某天銷售這種湖產(chǎn)品獲利150元,那么該天湖產(chǎn)品的售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BC的延長(zhǎng)線與AD的延長(zhǎng)線交于點(diǎn)E,且DC=DE.
(1)求證:∠A=∠AEB;
(2)連接OE,交CD于點(diǎn)F,OE⊥CD,求證:△ABE是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),完成下列各題:
將函數(shù)關(guān)系式用配方法化為的形式,并寫出它的頂點(diǎn)坐標(biāo)、對(duì)稱軸.
求出它的圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo).
在直角坐標(biāo)系中,畫出它的圖象.
根據(jù)圖象說(shuō)明:當(dāng)為何值時(shí),;當(dāng)為何值時(shí),.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=4,將△ABC△繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到△ADE,連結(jié)BE,則BE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】位于合肥濱湖新區(qū)的渡江戰(zhàn)役紀(jì)念館,實(shí)物圖如圖1所示,示意圖如圖2所示.某學(xué)校數(shù)學(xué)興趣小組通過(guò)測(cè)量得知,紀(jì)念館外輪廓斜坡AB的坡度i=1:,底基BC=50m,∠ACB=135°,求館頂A離地面BC的距離.(結(jié)果精確到0.1m,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖AB是⊙O的切線,切點(diǎn)為B,AO交⊙O于點(diǎn)C,過(guò)點(diǎn)C作DC⊥OA,交AB于點(diǎn)D.
(1)求證:∠CDO=∠BDO;
(2)若∠A=30°,⊙O的半徑為4,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com