【題目】計算
(1)(x+y)(x﹣y)+x(2y﹣x
(2)(3x3﹣2x2)÷x﹣(x﹣1)2

【答案】
(1)解:原式=x2﹣y2+2xy﹣x2=﹣y2+2xy
(2)解:原式=3x2﹣2x﹣x2+2x﹣1=2x2﹣1
【解析】①原式利用平方差公式及單項式乘以多項式法則計算即可得到結(jié)果;②原式第一項利用多項式除以單項式法則計算,第二項利用完全平方公式展開即可得到結(jié)果.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平面直角坐標系中,等邊的邊長為6,點在邊上,點在邊上,且.反比例函數(shù)的圖象恰好經(jīng)過點和點.則的值為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為O的直徑,C為O上一點,AD與過點C的切線互相垂直,垂足為點D,AD交O于點E,連接CE,CB.

(1)求證:CE=CB;

(2)若AC=,CE=,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中,對稱軸的條數(shù)最多的是 ( )

A. 線段 B. 等腰三角形 C. 等邊三角形 D. 矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動手操作題:如何能把一個三角形分成兩個等腰三角形嗎?
實際上,一個三角形只要具備下列三個條件之一,都可以被分成兩個等腰三角形:
①一個角為90°;②一個角是另一個的2倍(第三角必須大于45°);
③一個角是另一個角的3倍.今天,我們通過作圖來驗證這個結(jié)論。
(1)問題1:
如圖,Rt△ABC中,求畫一條直線l將△ABC分成兩個等腰三角形.并說明直線l與△ABC
邊上的交點D的位置.

(2)問題2:
如圖,△ABC中,∠ACB=80°, ∠BAC=40°,求畫一條直線l把△ABC分成兩個等腰三角形, 并在圖中標注兩個頂角的度數(shù).

(3)問題3:
如圖,△ABC中,∠ACB=120°, ∠BAC=40°,求畫一條直線l把△ABC分成兩個等腰三角形, 并在圖中標注兩個頂角的度數(shù).

(4)問題:4:
如果等腰三角形能被一條直線分成兩個等腰三角形,則原等腰三角形的頂角可以是°.(至少寫出三個)
(5)拓展:已知△ABC的三條邊長分別為3,4,6,在△ABC所在平面內(nèi)畫一條直線,將△ABC分割成兩個三角形,使其中的一個是等腰三角形,則這樣的直線最多可畫( )
A.6條
B.7條
C.8條
D.9條

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上有、、三地,地位于、兩地之間.甲車從地沿這條公路勻速駛向地,乙車從地沿這條公路勻速駛向地.在甲車出發(fā)至甲車到達地的過程中,甲、乙兩車各自與地的距離)與甲車行駛時間之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:甲車出發(fā)時,兩車相遇;乙車出發(fā)時,兩車相距乙車出發(fā)時,兩車相遇;甲車到達地時,兩車相距.其中正確的是 (填寫所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題:
①平行四邊形的對邊相等;
②對角線相等的四邊形是矩形;
③正方形既是軸對稱圖形,又是中心對稱圖形;
④一條對角線平分一組對角的平行四邊形是菱形.
其中真命題的個數(shù)是( 。
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為組織代表隊參加市拜炎帝、誦經(jīng)典吟誦大賽,初賽后對選手成績進行了整理,分成5個小組(表示成績,單位:分).組:組:;組:;組:組:,并繪制如圖兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息,解答下列問題:

(1)參加初賽的選手共有 名,請補全頻率分布直方圖;

(2)扇形統(tǒng)計圖中,組對應(yīng)的圓心角是多少度?組人數(shù)占參賽選手的百分比是多少?

(3)學校準備組成8人的代表隊參加市級決賽,組6名選手直接進入代表隊,現(xiàn)要從組中的兩名男生和兩名女生中,隨機選取兩名選手進入代表隊,請用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連結(jié)BD,BE.以下四個結(jié)論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠ACE=∠DBC其中結(jié)論正確的個數(shù)有( )

A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習冊答案