【題目】如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連結BD,BE.以下四個結論:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠ACE=∠DBC其中結論正確的個數(shù)有( )

A.4
B.3
C.2
D.1

【答案】B
【解析】①∵∠BAC=∠DAE=90°,

∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,

在△BAD和△CAE中,

,

∴△BAD≌△CAE(SAS),

∴BD=CE,本選項正確;②∵△BAD≌△CAE,

∴∠ABD=∠ACE,

∵∠ABD+∠DBC=45°,

∴∠ACE+∠DBC=45°,

∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,

則BD⊥CE,本選項正確;③∵△ABC為等腰直角三角形,

∴∠ABC=∠ACB=45°,

∴∠ABD+∠DBC=45°,

∵∠ABD=∠ACE

∴∠ACE+∠DBC=45°,本選項正確;④∵∠ABD=∠ACE,

∴只有當∠ABD=∠DBC時,∠ACE=∠DBC才成立。

綜上所述,正確的結論有3個.

所以答案是:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)(x+y)(x﹣y)+x(2y﹣x
(2)(3x3﹣2x2)÷x﹣(x﹣1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將坐標原點沿軸向左平移個單位長度得到點,過點軸的平行線交反比例函數(shù)的圖象于點,.

(1)求反比例函數(shù)的解析式;

(2)若、是該反比例函數(shù)圖象上的兩點,且時,,指出點、各位于哪個象限?并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】滿足x-5>3x+1的x的最大整數(shù)是( )
A.0
B.-2
C.-3
D.-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點在拋物線上.

(1)求拋物線的解析式;

(2)如圖1,點的坐標為,直線交拋物線于另一點,過點軸的垂線,垂足為,設拋物線與軸的正半軸交于點,連接,求證;

(3)如圖2,直線分別交軸,軸于兩點,點從點出發(fā),沿射線方向勻速運動,速度為每秒個單位長度,同時點從原點出發(fā),沿軸正方向勻速運動,速度為每秒1個單位長度,點是直線與拋物線的一個交點,當運動到秒時,,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某等腰三角形的兩條邊長分別為3cm6cm,則它的周長為(  )

A. 9cm B. 12cm C. 15cm D. 12cm15cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9.52變形正確的是( 。

A. 9.52=92+0.52 B. 9.52=(10+0.5)(10﹣0.5)

C. 9.52=102﹣2×10×0.5+0.52 D. 9.52=92+9×0.5+0.52

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 已知關于 一元二次方程 兩個實數(shù)根 .

(1)取值范圍

(2)滿足 ,的值.

查看答案和解析>>

同步練習冊答案