【題目】如圖,在ABC中,已知∠ACB90°AB10cm,AC8cm,動點P從點A出發(fā),以2cm/s的速度沿線段AB向點B運動,在運動過程中,當(dāng)APC為等腰三角形時,點P出發(fā)的時間t可能的值為_____

【答案】4

【解析】

由于沒有指明等腰三角形的底邊,所以需要分類討論:AP=AC,AP=PC,AC=PC

解:如圖,

∵在ABC中,已知∠ACB90°,AB10cmAC8cm,

∴由勾股定理,得BC6cm

①當(dāng)APAC時,2t8,則t4;

②當(dāng)APPC時,過點PPDAC于點D,則ADCD,PDBC

PDABC的中位線,

∴點PAB的中點,

2t5,即t

③若ACPC8cm時,與PCAC矛盾,不符合題意.

綜上所述,t的值是4

故答案為:4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達(dá)B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離ykm)與乙車行駛時間xh)之間的函數(shù)關(guān)系如圖所示.下列說法:乙車的速度是120km/h;②m=160;③H的坐標(biāo)是(7,80);④n=7.5.其中說法正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點都在格點上,建立如圖所示的平面直角坐標(biāo)系.

(1)將△ABC向左平移7個單位長度后再向下平移3個單位長度,請畫出經(jīng)過兩次平移后得到的△A1B1C1;

(2)以原點O為位似中心,將△ABC縮小,使變換后得到的△A2B2C2與△ABC對應(yīng)邊的比為12.請在網(wǎng)格內(nèi)畫出在第三象限內(nèi)的△A2B2C2,并寫出點A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把兩個直角三角形如圖放置,使重合,相交于點,其中,,,

中線段的長________________

如圖,把繞著點逆時針旋轉(zhuǎn)相交于點,若恰好是以為底邊的等腰三角形,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳環(huán)保,綠色出行的理念得到廣大群眾的接受,越來越多的人喜歡選擇自行車作為出行工具小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150分的速度騎行一段時間,休息了5分鐘,再以m/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程與時間分鐘的關(guān)系如圖,請結(jié)合圖象,解答下列問題:

______,______,______

若小軍的速度是120分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;

的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時與小軍相距100米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,在邊長為的小正方形組成的網(wǎng)格中,的頂點均在格點上,點軸上,點的坐標(biāo)為

關(guān)于點中心對稱的點的坐標(biāo)為________;

繞點順時針旋轉(zhuǎn)后得到,那么點的坐標(biāo)為________;線段在旋轉(zhuǎn)過程中所掃過的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BC20 cm,PQ,MN分別從A,BC,D出發(fā),沿AD,BC,CBDA方向在矩形的邊上同時運動,當(dāng)有一個點先到達(dá)所在運動邊的另一個端點時,運動即停止.已知在相同時間內(nèi),若BQx cm(x≠0),則AP2x cm,CM3x cm,DNx2 cm,

(1)當(dāng)x為何值時,點P,N重合;

(2)當(dāng)x為何值是,以P,QM,N為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店需要購進(jìn)甲、乙兩種商品共160件,其進(jìn)價和售價如下表:(注:獲利=售價-進(jìn)價)

(1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應(yīng)分別購進(jìn)多少件?

(2)若商店計劃投入資金少于4290元,且銷售完這批商品后獲利多于1260元,請問共有幾種購貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點P是等邊ABC內(nèi)一點,連接PC,以PC為邊作等邊三角形PDC,連接PAPB,BD

1)求證:∠APC=∠BDC;

2)當(dāng)∠APC150°時,試猜想DPB的形狀,并說明理由;

3)當(dāng)∠APB100°DBPB,求∠APC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案