【題目】已知:如圖,點P是等邊ABC內(nèi)一點,連接PC,以PC為邊作等邊三角形PDC,連接PA,PB,BD

1)求證:∠APC=∠BDC;

2)當∠APC150°時,試猜想DPB的形狀,并說明理由;

3)當∠APB100°DBPB,求∠APC的度數(shù).

【答案】(1)見解析;(2)DPB是直角三角形,理由見解析;(3)∠APC130°

【解析】

(1)由“SAS”可證△ACP≌△BCD,可得∠APC=∠BDC;

(2)由全等三角形的性質(zhì)可得∠BDC=∠APC=150°,∠PDC=60°,可得∠BDP=90°,即可求解;

(3)設∠APC=x,由周角的性質(zhì)和等邊三角形的性質(zhì)可得∠BPD=200°﹣x,∠BDP=x﹣60°,由等腰三角形的性質(zhì)可列方程,即可求解.

1)如圖,∵△ABC,PDC是等邊三角形,

ACBCPCPDCD,∠ACB=∠PCD60°,

∴∠ACB-∠PCB=∠PCD-∠PCB

∴∠ACP=∠BCD,

ACBC,PCCD

∴△ACP≌△BCDSAS

∴∠APC=∠BDC;

2DPB是直角三角形.

理由:∵∠BDC=∠APC150°,∠PDC60°

∴∠BDP=∠BDC﹣∠PDC90°,

∴△DPB是直角三角形;

3)設∠APCx,則∠BPD==360°-100°-60°-x=200°x,∠BDPx60°

PBDB

∴∠BPD=∠BDP,

200°xx60°

x130°,

∴∠APC130°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,已知∠ACB90°AB10cm,AC8cm,動點P從點A出發(fā),以2cm/s的速度沿線段AB向點B運動,在運動過程中,當APC為等腰三角形時,點P出發(fā)的時間t可能的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】俗話說一鋪養(yǎng)三代。曾經(jīng),在市區(qū)繁華地段租一間門面,做點小生意,是不少人的生存之道。如今,這樣的傳統(tǒng)致富門道正在不斷受到挑戰(zhàn)。某服裝店主,順應時代潮流,在實體店銷售的同時,開始網(wǎng)上銷售。

(1)該店主某月線上線下共銷售某款童裝200件,其中網(wǎng)上銷售量不低于實體銷售量的4倍,求該店主該月實體銷售量最多為多少?

(2)已知該店主5月實體銷售該童裝100件,每件獲利18元;網(wǎng)上銷售200件,每件獲利12元。6月店主加大網(wǎng)上銷售力度,網(wǎng)上銷售每件獲利較5月減少m%,但銷售量比5月增加了2m%,實體店每件獲利不變,銷售量比5月減少了m%。結果該店主5月、6月線上線下獲利總金額相同,求m的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,﹣1),圖象與y軸交于點C(0,3),與x軸交于A、B兩點.

(1)求拋物線的解析式;

(2)設拋物線對稱軸與直線BC交于點D,連接AC、AD,求△ACD的面積;

(3)點E為直線BC上的任意一點,過點Ex軸的垂線與拋物線交于點F,問是否存在點E使△DEF為直角三角形?若存在,求出點E坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為1,經(jīng)過點A(2,0)的直線與⊙O相切于點B,與y軸相交于點C.

(1)求AB的長;

(2)如果把直線AC看成一次函數(shù)y=kx+b的圖象,試求k、b.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,AB=8,點C和點D是⊙O上關于直線AB對稱的兩個點,連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點E,過點C作直線CG與線段AB的延長線相交于點F,與直線AD相交于點G,且∠GAF=GCE

(1)求證:直線CG為⊙O的切線;

(2)若點H為線段OB上一點,連接CH,滿足CB=CH,

①△CBH∽△OBC

②求OH+HC的最大值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點.ABC的邊BCx軸上,AC兩點的坐標分別為A0,m)、Cn,0),B(﹣5,0),且,點PB出發(fā),以每秒2個單位的速度沿射線BO勻速運動,設點P運動時間為t秒.

1)求A、C兩點的坐標;

2)連接PA,用含t的代數(shù)式表示POA的面積;

3)當P在線段BO上運動時,是否存在一點P,使PAC是等腰三角形?若存在,請寫出滿足條件的所有P點的坐標并求t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC中,AM為邊BC上的中線,動點D在直線AM上,以CD為一邊在CD的下方作等邊CDE,設直線BE與直線AM的交點為O

1)如圖1,點D在線段AM上時,填空:

①線段ADBE的數(shù)量關系是   ②∠AOB的度數(shù)是   

2)如圖2,當動點D在線段MA的延長線上時,試判斷(1)中的結論是否成立?若成立,請給予證明:若不成立,請寫出新的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年本市蜜桔大豐收,某水果商銷售一種蜜桔,成本價為10/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18/千克,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克與銷售價x(元/千克之間的函數(shù)關系如圖所示

1yx之間的函數(shù)關系式

2該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為多少

銷售利潤=銷售價成本價

查看答案和解析>>

同步練習冊答案