【題目】如圖,已知AB為⊙O的直徑,AB=8,點C和點D是⊙O上關于直線AB對稱的兩個點,連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點E,過點C作直線CG與線段AB的延長線相交于點F,與直線AD相交于點G,且∠GAF=GCE

(1)求證:直線CG為⊙O的切線;

(2)若點H為線段OB上一點,連接CH,滿足CB=CH,

①△CBH∽△OBC

②求OH+HC的最大值

【答案】(1)證明見解析;(2)①證明見解析;②5.

【解析】

(1)由題意可知:∠CAB=GAF,由圓的性質可知:∠CAB=OCA,所以∠OCA=GCE,從而可證明直線CG是⊙O的切線;

(2)①由于CB=CH,所以∠CBH=CHB,易證∠CBH=OCB,從而可證明CBH∽△OBC;

②由CBH∽△OBC可知:,所以HB=,由于BC=HC,所以OH+HC=4+BC,利用二次函數(shù)的性質即可求出OH+HC的最大值.

1)由題意可知:∠CAB=GAF,

AB是⊙O的直徑,

∴∠ACB=90°

OA=OC,

∴∠CAB=OCA,

∴∠OCA+OCB=90°,

∵∠GAF=GCE,

∴∠GCE+OCB=OCA+OCB=90°,

OC是⊙O的半徑,

∴直線CG是⊙O的切線;

(2)①∵CB=CH,

∴∠CBH=CHB,

OB=OC,

∴∠CBH=OCB,

∴△CBH∽△OBC

②由CBH∽△OBC可知:

AB=8,

BC2=HBOC=4HB,

HB=,

OH=OB-HB=4-

CB=CH,

OH+HC=4+BC,

當∠BOC=90°,

此時BC=4

∵∠BOC<90°,

0<BC<4

BC=x則CH=x,BH=

x=2時,

OH+HC可取得最大值,最大值為5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,在邊長為的小正方形組成的網(wǎng)格中,的頂點均在格點上,點軸上,點的坐標為

關于點中心對稱的點的坐標為________;

繞點順時針旋轉后得到,那么點的坐標為________;線段在旋轉過程中所掃過的面積是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是二次函數(shù) y=ax2+bx+ca0)的圖象的一部分,給出下列命題:a+b+c=0;②b2a;③ax2+bx+c=0的兩根分別為﹣31;④a﹣2b+c0.其中正確的命題是  

A. B. ② ③ C. ③ ④ D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位的半圓O1,O2,O3,…組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2018秒時,點P的坐標是點(  )

A. (2017,1) B. (2018,0) C. (2017,﹣1) D. (2019,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點P是等邊ABC內一點,連接PC,以PC為邊作等邊三角形PDC,連接PAPB,BD

1)求證:∠APC=∠BDC;

2)當∠APC150°時,試猜想DPB的形狀,并說明理由;

3)當∠APB100°DBPB,求∠APC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB6,AD8,沿BD折疊使點A到點A′處,DA′BC于點F.

(1)求證:FBFD;

(2)求證:CA′BD;

(3)求△DBF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.

(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?

(2)根據(jù)消費者需求,該網(wǎng)店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.

①若設購進甲種羽毛球m筒,則該網(wǎng)店有哪幾種進貨方案?

②若所購進羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數(shù)關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學參加數(shù)學綜合素質測試,各項成績如下(單位:分)

數(shù)與代數(shù)

空間與圖形

統(tǒng)計與概率

綜合與實踐

學生甲

90

94

86

90

學生乙

94

82

93

91

1)分別計算甲、乙成績的平均數(shù)和方差;

2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計與概率、綜合與實踐的成績按3322計算,那么甲、乙的數(shù)學綜合素質成績分別為多少分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,AB=6, ∠BAC=30, ∠BAC的平分線交BC于點D,E,F分別是線段ADAB上的動點,則BE+EF的最小值是___

查看答案和解析>>

同步練習冊答案