【題目】如圖,在平面直角坐標系xOy中拋物線與x軸的正半軸交于點,交y于點C,頂點,直線ABy軸交于點D

求拋物線的表達式;

聯(lián)結(jié)BC,如果點Px軸上,且相似,求出點P坐標.

【答案】(1)2

【解析】

設(shè)拋物線解析式為:,將點B的坐標代入求值即可;

設(shè)根據(jù)函數(shù)解析式求得點C的坐標,由點AB的坐標求得直線AB的解析式,從而得到點D的坐標,然后由點的坐標可以求得的邊長,所以結(jié)合相似三角形的對應(yīng)邊成比例求得點P的坐標注意:在中,只能是鈍角.

設(shè)拋物線解析式為:,

代入,得

解得

故該拋物線解析式為:

如圖,連接BCPC,

設(shè)

設(shè)直線AB的解析式為:,

,,

,

解得

則直線AB的解析式為:

易得

由拋物線解析式得到:

,

易求,,,,

結(jié)合圖形知,

時,,即,

解得舍去,

此時點P的坐標是

時,,即,

解得舍去

此時點P的坐標是;

綜上所述,點P的坐標是

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為滿足市場需求,某超市在五月初五端午節(jié)來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.

1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關(guān)系式;

2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?

3)為穩(wěn)定物價,有關(guān)管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:二次函數(shù)yax2+bx+c的圖象如圖所示,下列結(jié)論中:

①abc0;②b24ac0;③3a+c0a+c2b2,⑤a+b+c0

其中正確的序號是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD為等邊△ABC的高,E、F分別為線段ADAC上的動點,且AECF,當BF+CE取得最小值時,∠AFB=(  )

A. 112.5°B. 105°C. 90°D. 82.5°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A10)、C(﹣23)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標;

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖冢埱蟪M點的坐標和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)約資源,科學指導居民改善居住條件,小王向房管部門提出了一個購買商品房的政策性方案.

人均住房面積(平方米)

單價(萬元/平方米)

不超過30(平方米)

0.3

超過30平方米不超過m(平方米)部分(45≤m≤60)

0.5

超過m平方米部分

0.7

根據(jù)這個購房方案:

(1)若某三口之家欲購買120平方米的商品房,求其應(yīng)繳納的房款;

(2)設(shè)該家庭購買商品房的人均面積為x平方米,繳納房款y萬元,請求出y關(guān)于x的函數(shù)關(guān)系式;

(3)若該家庭購買商品房的人均面積為50平方米,繳納房款為y萬元,且57<y≤60 時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,,點EF分別是BC、AD的中點.

1)求證:

2)當時,求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.

(1)今年A型車每輛售價多少元?(用列方程的方法解答)

(2)該車行計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進貨才能使這批車獲利最多?

A,B兩種型號車的進貨和銷售價格如下表:

A型車

B型車

進貨價格(元)

1100

1400

銷售價格(元)

今年的銷售價格

2000

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題解決)

一節(jié)數(shù)學課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點B逆時針旋轉(zhuǎn)90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點B順時針旋轉(zhuǎn)90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

同步練習冊答案