【題目】如圖,O為坐標原點,點B在軸的正半軸上,四邊形OACB是平行四邊形, ,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F.若點F為BC的中點,且△AOF的面積S=12,則點C的坐標為(_____,_____).
【答案】
【解析】試題分析:設(shè)OA=a(a>0),過點A作AH⊥x軸,過點F作FM⊥x軸于M,過點C作CN⊥x軸于點N,
由平行四邊形性質(zhì)可證得OH=BN,
∵sin∠AOB=,
∴AH=a,OH=a,
∴S△AOH=·a·a=a2,
∵S△AOF=12,
∴S平行四邊形AOBC=24,
∵F為BC的中點,
∴S△OBF=6,
∵BF=a,∠FBM=∠AOB,
∴FM=a,BM=a,
∴S△BMF=BM·FM=·a·a =a2,
∴S△FOM=S△OBF+S△BMF=6+a2,
∵點A,F都在y=的圖象上,
∴S△AOH=S△FOM=k,
∴a2=6+a2,
∴a=,
∴OA=,
∴AH=,OH=,
∵S平行四邊形AOBC=OBAH=24,
∴OB=AC=,
∴ON=OB+OH=,
∴C(, ).
故答案為: , .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是正方形對角線上一點,于,點、分別是、的中點.
(1)求證:;
(2)當點在對角線(不含、兩點)上運動時,是否為定值?如果是,請求其值;如果不是,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進甲、乙兩種商品,甲種商品共用了20000元,乙種商品共用了24000元.已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數(shù)相同.
(1)求甲、乙兩種商品的每件進價;
(2)該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變.要使兩種商品全部售完后共獲利不少于24600元,問甲種商品按原銷售單價至少銷售多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填在相應(yīng)的大括號里:
1,﹣,8.9,﹣7, ,﹣3.2,+1 008,﹣0.06,28,﹣9.
正整數(shù)集合:{______…};
負整數(shù)集合:{______…};
正分數(shù)集合:{______…};
負分數(shù)集合:{______…}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一名足球守門員練習折返跑,從球門的位置出發(fā),向前記作正數(shù),返回記作負數(shù),他的記錄如下(單位:米):
+6 | - 5 | +9 | - 10 | +13 | - 9 | - 4. |
(1)守門員是否回到了原來的位置?
(2)守門員離開球門的位置最遠是多少?
(3)守門員一共走了多少路程?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班為了解學生一學期做義工的時間情況,對全班50名學生進行調(diào)查,按做義工的時間(單位:小時),將學生分成五類: 類( ),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.
根據(jù)以上信息,解答下列問題:
(1) 類學生有 人,補全條形統(tǒng)計圖;
(2)類學生人數(shù)占被調(diào)查總?cè)藬?shù)的 %;
(3)從該班做義工時間在的學生中任選2人,求這2人做義工時間都在 中的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“甌柑”是溫州的名優(yōu)水果品牌。在平陽種植基地計劃種植A、B兩種甌柑30畝,已知A、B兩種甌柑的年產(chǎn)量分別為2000千克/畝、2500千克/畝,收購單價分別是8元/千克、7元/千克.
(1)若該基地收獲A、B兩種甌柑的年總產(chǎn)量為68000千克,求A、B兩種甌柑各種多少畝?
(2)若要求種植A種甌柑的畝數(shù)不少于B種的一半,全部收購該基地甌柑,那么種植A、 B兩種甌柑各多少畝時,其年總收入最多?最多為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b、c在數(shù)軸上對應(yīng)的點如圖所示,
(1)化簡:2|b﹣c|﹣|b+c|+|a﹣c|﹣|a﹣b|;
(2)若(c+4)2與|a+c+10|互為相反數(shù),且b=|a﹣c|,求(1)中式子的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市制米廠接到加工大米任務(wù),要求5天內(nèi)加工完220噸大米,制米廠安排甲、乙兩車間共同完成加工任務(wù),乙車間加工中途停工一段時間維修設(shè)備,然后改變加工效率繼續(xù)加工,直到與甲車間同時完成加工任務(wù)為止.設(shè)甲、乙兩車間各自加工大米數(shù)量y(噸)與甲車間加工時間s(天)之間的關(guān)系如圖(1)所示;未加工大米w(噸)與甲加工時間x(天)之間的關(guān)系如圖(2)所示,請結(jié)合圖象回答下列問題:
(1)甲車間每天加工大米 噸,a= .
(2)求乙車間維修設(shè)備后,乙車間加工大米數(shù)量y(噸)與x(天)之間函數(shù)關(guān)系式.
(3)若55噸大米恰好裝滿一節(jié)車廂,那么加工多長時間裝滿第一節(jié)車廂?再加工多長時間恰好裝滿第二節(jié)車廂?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com