【題目】如圖,某地有一座圓弧形的拱橋,橋下水面寬為7.2m,拱頂高出水面2.4m,現(xiàn)有一艘寬3m,船艙頂部為正方形并高出水面2m的貨船要經(jīng)過這里,此時貨船能順利通過這座拱橋嗎?請說明理由.
【答案】貨船能順利通過這座拱橋,理由見解析.
【解析】試題分析:根據(jù)題意畫出圖形,利用垂徑定理和勾股定理求出拱橋的半徑長,連接ON,OA,通過求距離水面2米高處即HD長為2時,橋有多寬即MN的長與貨船頂部的3米做比較來判定貨船能否通過(MN大于3則能通過,MN小于等于3則不能通過).先根據(jù)半弦,半徑和弦心距構造直角三角形求出半徑的長,再根據(jù)Rt△OHN中勾股定理求出HN的長,從而求得MN的長.
試題解析:如圖,連接ON,OA,
∵OC⊥AB,
∴D為AB中點,
∵AB=7.2m,
∴AD=AB=3.6m.
又∵CD=2.4m,
設OA=OC=ON=r,則OD=(r-2.4)m,
在Rt△AOD中,根據(jù)勾股定理得:r2=(r-2.4)2+3.62,解得r=3.9,
∵CD=2.4m,船艙頂部為正方形并高出水面AB=2m,
∴CH=2.4-2=0.4(m),
∴OH=r-CH=3.9-0.4=3.5(m),
在Rt△OHN中,HN2=ON2-OH2=3.92-3.52=2.96(m2),
∴HN=(m),
∴MN=2EN=2×≈3.44m>3m,
∴此貨船能順利通過這座拱橋.
科目:初中數(shù)學 來源: 題型:
【題目】某班要購買一批籃球和足球.已知籃球的單價比足球的單價貴40元,花1500元購買的籃球的個數(shù)與花900元購買的足球的個數(shù)恰好相等.
(1)籃球和足球的單價各是多少元?
(2)若該班恰好用完1000元購買的籃球和足球,則購買的方案有哪幾種?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】騎共享單車已成為人們喜愛的一種綠色出行方式.已知A、B、C三家公司的共享單車都是按騎車時間收費,標準如下:
公司 | 單價(元/半小時) | 充值優(yōu)惠 |
A | m | 充20元送5元,即:充20元實得25元 |
B | m-0.2 | 無 |
C | 1 | 充20元送20元,即:充20元實得40元 |
(注:使用這三家公司的共享單車,不足半小時均按半小時計費.用戶的賬戶余額長期有效,但不可提現(xiàn).)
4月初,李明注冊成了A公司的用戶,張紅注冊成了B公司的用戶,并且兩人在各自賬戶上分別充值20元.一個月下來,李明、張紅兩人使用單車的次數(shù)恰好相同,且每次都在半小時以內(nèi),結果到月底李明、張紅的賬戶余額分別顯示為5元、8元.
(1)求m的值;
(2)5月份,C公司在原標準的基礎上又推出新優(yōu)惠:每月的月初給用戶送出5張免費使用券(1
次用車只能使用1張券).如果王磊每月使用單車的次數(shù)相同,且在30次以內(nèi),每次用車都不超過
半小時. 若要在這三家公司中選擇一家并充值20元,僅從資費角度考慮,請你幫他作出選擇,并說
明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點,連接EF,點P從點E出發(fā),沿EF方向勻速運動,速度為1cm/s,同時,點Q從點D出發(fā),沿DB方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設運動時間為t(0<t<4)s,解答下列問題:
(1)求證:△BEF∽△DCB;
(2)當點Q在線段DF上運動時,若△PQF的面積為0.6cm2,求t的值;
(3)如圖2過點Q作QG⊥AB,垂足為G,當t為何值時,四邊形EPQG為矩形,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題是真命題的是( )
A.有兩條邊對應相等的兩個三角形全等
B.兩腰對應相等的兩個等腰三角形全等
C.兩角對應相等的兩個等腰三角形全等
D.一邊對應相等的兩個等邊三角形全等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算
(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);
(2).
(3)(﹣24)×(1+﹣);
(4)36÷(﹣3)2×(﹣1)+(﹣1)3+(﹣1)2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC與BD相交于點O,不能判斷四邊形ABCD是平行四邊形的是( )
A.AB=DC,AD=BCB.AB∥DC,AD∥BC
C.AB∥DC,AD=BCD.OA=OC,OB=OD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D是∠AOB的平分線OC上任意一點,過D作DE⊥OB于E,以DE為半徑作⊙D,
①判斷⊙D與OA的位置關系, 并證明你的結論。
②通過上述證明,你還能得出哪些等量關系?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com