【題目】【本小題滿(mǎn)分9分】某校組織了一次初三科技小制作比賽,有A、B、C、D四個(gè)班共提供了100件參賽作品.C班提供的參賽作品的獲獎(jiǎng)率為50%,其他幾個(gè)班的參賽作品情況及獲獎(jiǎng)情況繪制在下列圖和圖兩幅尚不完整的統(tǒng)計(jì)圖中.

(1)B班參賽作品有多少件?

(2)請(qǐng)你將圖的統(tǒng)計(jì)圖補(bǔ)充完整;

(3)通過(guò)計(jì)算說(shuō)明,哪個(gè)班的獲獎(jiǎng)率高?

(4)將寫(xiě)有A、B、C、D四個(gè)字母的完全相同的卡片放人箱中,從中一次隨機(jī)抽出兩張卡片,求抽到AB兩班的概率.

【答案】(1)25;(2)作圖見(jiàn)試題解析;(3)C;(4)

【解析】

試題分析:(1)直接利用扇形統(tǒng)計(jì)圖中百分?jǐn)?shù),進(jìn)而求出B班參賽作品數(shù)量;

(2)利用C班提供的參賽作品的獲獎(jiǎng)率為50%,結(jié)合C班參賽數(shù)量得出獲獎(jiǎng)數(shù)量;

(3)分別求出各班的獲獎(jiǎng)百分率,進(jìn)而求出答案;

(4)利用樹(shù)狀統(tǒng)計(jì)圖得出所有符合題意的答案進(jìn)而求出其概率.

試題解析:(1)由題意可得:100×(1﹣35%﹣20%﹣20%)=25(件),

答:B班參賽作品有25件;

(2)C班提供的參賽作品的獲獎(jiǎng)率為50%,C班的參賽作品的獲獎(jiǎng)數(shù)量為:100×20%×50%=10(件),

如圖所示:

;

(3)A班的獲獎(jiǎng)率為:×100%=40%,B班的獲獎(jiǎng)率為:×100%=44%,

C班的獲獎(jiǎng)率為:=50%;D班的獲獎(jiǎng)率為:×100%=40%,

C班的獲獎(jiǎng)率高;

(4)如圖所示:

,

故一共有12種情況,符合題意的有2種情況,則從中一次隨機(jī)抽出兩張卡片,求抽到A、B兩班的概率為:=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)EABCD內(nèi)部,AFBE,DFCE.

(1)求證:△BCE≌△ADF;

(2)設(shè)ABCD的面積為20,求四邊形AEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,如果BD,CE分別是∠ABC,ACB的平分線且他們相交于點(diǎn)P,設(shè)∠A=n°.

1)求∠BPC的度數(shù)(用含n的代數(shù)式表示),寫(xiě)出推理過(guò)程.

2)當(dāng)∠BPC=125°時(shí),∠A= .

3)當(dāng)n=60°時(shí),EB=7BC=12,DC的長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形ABCD內(nèi)接于⊙O,AC為⊙O的直徑,ACBD交于點(diǎn)E,且AE=AB.

(1)DA=DB,求證:AB=CB;

(2)如圖2,ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)30°得到FGC,點(diǎn)A經(jīng)過(guò)的路徑為,若AC=4,求圖中陰影部分面積S;

(3)在(2)的條件下,連接FB,求證:FB為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:如圖1,點(diǎn)A,B在直線l的同側(cè),在直線l上找一點(diǎn)P,使得AP+BP的值最。

小明的思路是:如圖2所示,先作點(diǎn)A關(guān)于直線l的對(duì)稱(chēng)點(diǎn)A′,使點(diǎn)A′,B分別位于直線l的兩側(cè),再連接A′B,根據(jù)“兩點(diǎn)之間線段最短”可知A′B與直線l的交點(diǎn)P即為所求.

請(qǐng)你參考小明同學(xué)的思路,探究并解決下列問(wèn)題:

(1)如圖3,在圖2的基礎(chǔ)上,設(shè)AA'與直線l的交點(diǎn)為C,過(guò)點(diǎn)B作BDl,垂足為D.若CP=1,AC=1,PD=2,直接寫(xiě)出AP+BP的值;

(2)將(1)中的條件“AC=1”去掉,換成“BD=4﹣AC”,其它條件不變,直接寫(xiě)出此時(shí)AP+BP的值;

(3)請(qǐng)結(jié)合圖形,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C在以AB為半徑的半圓上,AB=8,CBA=30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D

關(guān)AC對(duì)稱(chēng),DFDE于點(diǎn)D,并交EC的延長(zhǎng)線與點(diǎn)F.下列結(jié)論:①CECF;②線段EF的最小值為2

③當(dāng)AD=2時(shí),EF與半圓相切;④當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過(guò)的面積是16.其中正

確的結(jié)論()

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)E在線段AC上,DAB的延長(zhǎng)線上,連接DEBCF,過(guò)EEGBCG

1)下列兩個(gè)關(guān)系式:①DB=EC,DF=EF,請(qǐng)你選擇一個(gè)做為條件,另一個(gè)做為結(jié)論構(gòu)成一個(gè)正確的命題,并給予證明.

你選擇的條件是  ,結(jié)論是  .(只需填序號(hào))

2)在(1)的條件下,求證:FG=BC/2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)稱(chēng)軸為直線x1的拋物線經(jīng)過(guò)A(﹣10)、C03)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,點(diǎn)Dy軸上,且OB3OD

1)求該拋物線的表達(dá)式;

2)設(shè)該拋物線上的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t

①當(dāng)0t3時(shí),求四邊形CDBP的面積St的函數(shù)關(guān)系式,并求出S的最大值;

②點(diǎn)Q在直線BC上,若以CD為邊,點(diǎn)CD、Q、P為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=C=90°,BE,DF分別是∠ABC,ADC的平分線.

11與∠2有什么關(guān)系,為什么?

2BEDF有什么關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案