【題目】如圖,在△ABC中,AB=AC,點(diǎn)E在線段AC上,D在AB的延長(zhǎng)線上,連接DE交BC于F,過(guò)E作EG⊥BC于G.
(1)下列兩個(gè)關(guān)系式:①DB=EC,②DF=EF,請(qǐng)你選擇一個(gè)做為條件,另一個(gè)做為結(jié)論構(gòu)成一個(gè)正確的命題,并給予證明.
你選擇的條件是 ,結(jié)論是 .(只需填序號(hào))
(2)在(1)的條件下,求證:FG=BC/2.
【答案】(1)條件是①DB=EC,結(jié)論是②DF=EF,理由見(jiàn)解析;(2)見(jiàn)解析
【解析】試題分析:(1)條件是①DB=EC,結(jié)論是②DF=EF.(也可以填條件是②,結(jié)論是①).只要證明,即可解決問(wèn)題.
(2)由(1)可知, 推出,由,推出即可推出
試題解析:(1)條件是①DB=EC,結(jié)論是②DF=EF.(也可以填條件是②,結(jié)論是①).
理由:如圖作, 交BC于H.
∵
∴∠ABC=∠EHC,∠D=∠HEF,
∵AB=AC,
∴∠ABC=∠C=∠EHC,
∴EH=EC=BD,
在△FBD和△FEH中,
∴DF=EF.
(2)證明:由(1)可知,EH=EC,EG⊥HC,
∴GH=GC,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,∠DAC的平分線交DC于點(diǎn)E,若點(diǎn)P,Q分別是AD和AE上的動(dòng)點(diǎn),則DQ+PQ的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+1與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),已知點(diǎn)A的坐標(biāo)為(1,a),點(diǎn)B的坐標(biāo)為(b,﹣1).
(1)求此反比例函數(shù)的解析式;
(2)當(dāng)一次函數(shù)y=x+1的值大于反比例函數(shù)y=的值時(shí),求自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題錯(cuò)誤的是( 。
A.對(duì)角線互相垂直平分的四邊形是菱形
B.平行四邊形的對(duì)角線互相平分
C.矩形的對(duì)角線相等
D.對(duì)角線相等的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程與有一個(gè)相同的根,求此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是( )
A. 70° B. 35° C. 40° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽(yáng)”的號(hào)召,我市某單位準(zhǔn)備將院內(nèi)一塊長(zhǎng)30m,寬20m的長(zhǎng)方形空地,建成一個(gè)矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進(jìn)出口的寬度應(yīng)為多少米?(注:所有小道進(jìn)出口的寬度相等,且每段小道均為平行四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若三角形的兩邊長(zhǎng)分別為3和6,則第三邊的長(zhǎng)不可能是( )
A.3;B.4;C.5;D.6.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com