【題目】如圖,在四邊形ABCD中,ABDCABAD,對角線AC、BD相交于點O,AC平分∠BAD,過點CCEABAB的延長線于點E.若AB,BD2,則BE的長等于_____

【答案】

【解析】

首先證明四邊形ABCD是菱形,利用菱形的性質AOB是直角三角形,利用勾股定理求出OA,利用面積法求出EC的長,即可解決問題,菱形的面積=對角線乘積的一半。

解:∵ABCD
∴∠OAB=DCA,
AC為∠DAB的平分線,
∴∠OAB=DAC
∴∠DCA=DAC,
CD=AD=AB
ABCD,
∴四邊形ABCD是平行四邊形,
AD=AB,
∴四邊形ABCD是菱形;

OA=OC,BDAC

CEAB
BD=2,

OB=BD=1,
RtAOB中,AB=,OB=1
OA= =2,
SACB=2SAOB=2= ABCE
CE=
RtBCE中,∵BC=AB=,EC=,
BE= =
故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,圓M經(jīng)過原點O,直線x軸、y軸分別相交于A,B兩點.

(1)求出A,B兩點的坐標;

(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;

(3)設(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:AM的值為 時,四邊形AMDN是矩形;AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,OHAC于點H,過A點的切線與OC的延長線交于點D,∠B30°,OH5,請求出:

(1)AOC的度數(shù);

(2)劣弧的長;(結果保留π)

(3)線段AD的長.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,下列條件中不能判定直線AT是⊙O的切線的是( )

A. AB=4AT=3,BT=5 B. B=45°AB=AT

C. B=55°,∠TAC=55° D. ATC=B

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC是⊙O的內接三角形,且AB=BC,點D為劣弧BC上的一點,連接BD、DC.

(1)如圖1,若∠BDC=120°,求證:△ABC是等邊三角形;

(2)如圖2,在(1)的條件下,線段CD繞點C順時針旋轉60°,得到線段CE,連接AE,求證:BD=AE;

(3)如圖3,在(2)的條件下,連接OE,若⊙O的半徑為,OE=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,cotADB=,AB=16.點E在射線BC上,點F在線段BD上,且DEF=ADB.

(1)求線段BD的長;

(2)設BE=x,DEF的面積為y,求y關于x的函數(shù)關系式,并寫出函數(shù)定義域;

(3)當DEF為等腰三角形時,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)yax2+bx3x軸于點A(﹣3,0)、B1,0),在y軸上有一點E0,1),連接AE

1)求二次函數(shù)的表達式;

2)若點D為拋物線在x軸負半軸下方的一個動點,求△ADE面積的最大值;

3)拋物線對稱軸上是否存在點P,使△AEP為等腰三角形?若存在,請直接寫出所有P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10分)荊州素有魚米之鄉(xiāng)的美稱,某漁業(yè)公司組織20輛汽車裝運鰱魚、草魚、青魚共120噸去外地銷售,按計劃20輛汽車都要裝運,每輛汽車只能裝運同一種魚,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:

1)設裝運鰱魚的車輛為x輛,裝運草魚的車輛為y輛,求yx之間的函數(shù)關系式;

2)如果裝運每種魚的車輛都不少于2輛,那么怎樣安排車輛能使此次銷售獲利最大?并求出最大利潤.

查看答案和解析>>

同步練習冊答案