【題目】(10分)荊州素有“魚米之鄉(xiāng)”的美稱,某漁業(yè)公司組織20輛汽車裝運鰱魚、草魚、青魚共120噸去外地銷售,按計劃20輛汽車都要裝運,每輛汽車只能裝運同一種魚,且必須裝滿,根據下表提供的信息,解答以下問題:
(1)設裝運鰱魚的車輛為x輛,裝運草魚的車輛為y輛,求y與x之間的函數關系式;
(2)如果裝運每種魚的車輛都不少于2輛,那么怎樣安排車輛能使此次銷售獲利最大?并求出最大利潤.
【答案】(1)y=﹣3x+20;(2)裝運鰱魚的車輛為2輛,裝運草魚的車輛為14輛,裝運青魚的車輛為4輛時獲利最大,最大利潤為33.2萬元.
【解析】試題(1)設裝運鰱魚的車輛為x輛,裝運草魚的車輛為y輛,則由(20﹣x﹣y)輛汽車裝運青魚,根據題意建立等式就可以求出結論;
(2)根據建立不等裝運每種魚的車輛都不少于2輛,列出不等式組求出x的范圍,設此次銷售所獲利潤為w元,w=﹣1.4x+36,再利用一次函數的性質即可解答.
試題解析:(1)設裝運鰱魚的車輛為x輛,裝運草魚的車輛為y輛,則由(20﹣x﹣y)輛汽車裝運青魚,由題意,得:8x+6y+5(20﹣x﹣y)=120,∴y=﹣3x+20.
答:y與x的函數關系式為y=﹣3x+20;
(2),根據題意,得: ,∴,解得:2≤x≤6,
設此次銷售所獲利潤為w元,w=0.25x×8+0.3(﹣3x+20)×6+0.2(20﹣x+3x﹣20)×5=﹣1.4x+36,∵k=﹣1.4<0,∴w隨x的增大而減。∴當x=2時,w取最大值,最大值為:﹣1.4×2+36=33.2(萬元).
答:裝運鰱魚的車輛為2輛,裝運草魚的車輛為14輛,裝運青魚的車輛為4輛時獲利最大,最大利潤為33.2萬元.
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC、BD相交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E.若AB=,BD=2,則BE的長等于_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于反比例函數y=(k≠0),下列所給的四個結論中,正確的是( 。
A. 若點(2,4)在其圖象上,則(﹣2,4)也在其圖象上
B. 當k>0時,y隨x的增大而減小
C. 過圖象上任一點P作x軸、y軸的垂線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數的圖象關于直線y=x和y=﹣x成軸對稱
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在由邊長為1的小正方形組成的網格圖中,有一個格點三角形ABC.(注:頂點均在網格線交點處的三角形稱為格點三角形.)
(1)△ABC是 三角形(填“銳角”、“直角”或“鈍角”);
(2)若P、Q分別為線段AB、BC上的動點,當PC+PQ取得最小值時,
① 在網格中用無刻度的直尺,畫出線段PC、PQ.(請保留作圖痕跡.)
② 直接寫出PC+PQ的最小值: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在水平地面點A處有一網球發(fā)射器向空中發(fā)射網球,網球飛行路線是一條拋物線,在地面上落點為B.有人在直線AB上點C處(靠點B一側)豎直向上擺放無蓋的圓柱形桶,試圖讓網球落入桶內.已知AB=4 m,AC=3 m,網球飛行最大高度OM=5 m,圓柱形桶的直徑為0.5 m,高為0.3 m(網球的體積和圓柱形桶的厚度忽略不計).
(1)如果豎直擺放5個圓柱形桶時,網球能不能落入桶內?
(2)當豎直擺放圓柱形桶多少個時,網球可以落入桶內?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A(-1,0),B(2,-3)兩點在一次函數y=-x+m與二次函數y=ax2+bx-3的圖象上.
(1)求m的值和二次函數的表達式;
(2)設二次函數的圖象交y軸于點C,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“春種一粒粟,秋收萬顆子”,唐代詩人李紳這句詩中的“粟”即谷子(去皮后則稱為“小米”),被譽為中華民族的哺育作物.某商場銷售一種品牌的小米,進價是40元/袋.市場調查后發(fā)現(xiàn),售價是60元/袋時,平均每星期的銷售量是300袋,而銷售單價每降低1元,平均每星期就可多售出30袋.
(1)若每袋小米降價x元,寫出該商場銷售該品牌小米每星期獲得的利潤w(元)與x(元)之間的函數關系式.
(2)在(1)的條件下,每袋小米的銷售單價是多少元時,該商場每星期銷售這種品牌小米獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有三張正面分別標有數字:-1,1,2的卡片,它們除數字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機抽出一張記下數字,放回洗勻后再從中隨機抽出一張記下數字.
(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數字的所有結果;
(2)將第一次抽出的數字作為點的橫坐標x,第二次抽出的數字作為點的縱坐標y,求點(x,y)落在雙曲線上的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)計算:(﹣1)2014+(sin30°)﹣1+()0﹣|3﹣|+83×(﹣0.125)3
(2)解不等式組: 把解集在數軸上表示出來,并將解集中的整數解寫出來.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com