【題目】某山區(qū)不僅有美麗風光,也有許多令人喜愛的土特產,為實現脫貧奔小康,某村組織村民加工包裝土特產銷售給游客,以增加村民收入.已知某種士特產每袋成本10元.試銷階段每袋的銷售價x(元)與該士特產的日銷售量y(袋)之間的關系如表:
x(元) | 15 | 20 | 30 | … |
y(袋) | 25 | 20 | 10 | … |
若日銷售量y是銷售價x的一次函數,試求:
(1)日銷售量y(袋)與銷售價x(元)的函數關系式;
(2)假設后續(xù)銷售情況與試銷階段效果相同,要使這種土特產每日銷售的利潤最大,每袋的銷售價應定為多少元?每日銷售的最大利潤是多少元?
【答案】(1)y=﹣x+40;(2)要使這種土特產每日銷售的利潤最大,每袋的銷售價應定為25元,每日銷售的最大利潤是225元.
【解析】
(1)根據表格中的數據,利用待定系數法,求出日銷售量y(袋)與銷售價x(元)的函數關系式即可
(2)利用每件利潤×總銷量=總利潤,進而求出二次函數最值即可.
(1)依題意,根據表格的數據,設日銷售量y(袋)與銷售價x(元)的函數關系式為y=kx+b得
,解得,
故日銷售量y(袋)與銷售價x(元)的函數關系式為:y=﹣x+40;
(2)依題意,設利潤為w元,得
w=(x﹣10)(﹣x+40)=﹣x2+50x+400,
整理得w=﹣(x﹣25)2+225,
∵﹣1<0,
∴當x=2時,w取得最大值,最大值為225,
故要使這種土特產每日銷售的利潤最大,每袋的銷售價應定為25元,每日銷售的最大利潤是225元.
科目:初中數學 來源: 題型:
【題目】“六一”兒童節(jié)前夕,某部隊戰(zhàn)士到福利院慰問兒童.戰(zhàn)士們從營地出發(fā),勻速步行前往文具店選購禮物,停留一段時間后,繼續(xù)按原速步行到達福利院(營地、文具店、福利院三地依次在同一直線上).到達后因接到緊急任務,立即按原路勻速跑步返回營地(贈送禮物的時間忽略不計),下列圖象能大致反映戰(zhàn)
士們離營地的距離與時間之間函數關系的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,二次函數(,,是常數,)的圖象的一部分與軸的交點在與之間,對稱軸為直線.下列結論:①;②;③;④(為實數);⑤當時,.其中,正確結論的個數是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為落實立德樹人的根本任務,加強思改、歷史學科教師的專業(yè)化隊伍建設.某校計劃從前來應聘的思政專業(yè)(一名研究生,一名本科生)、歷史專業(yè)(一名研究生、一名本科生)的高校畢業(yè)生中選聘教師,在政治思想審核合格的條件下,假設每位畢業(yè)生被錄用的機會相等
(1)若從中只錄用一人,恰好選到思政專業(yè)畢業(yè)生的概率是 :
(2)若從中錄用兩人,請用列表或畫樹狀圖的方法,求恰好選到的是一名思政研究生和一名歷史本科生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+3經過點A(1,0)和點B(﹣3,0),與y軸交于點C,點P為第二象限內拋物線上的動點.
(1)拋物線的解析式為 ,拋物線的頂點坐標為 ;
(2)如圖1,連接OP交BC于點D,當S△CPD:S△BPD=1:2時,請求出點D的坐標;
(3)如圖2,點E的坐標為(0,﹣1),點G為x軸負半軸上的一點,∠OGE=15°,連接PE,若∠PEG=2∠OGE,請求出點P的坐標;
(4)如圖3,是否存在點P,使四邊形BOCP的面積為8?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與y軸交于點C(0,-4),與x軸交于點A,B,且B點的坐標為(2,0)
(1)求該拋物線的解析式;
(2)若點P是AB上的一動點,過點P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3)若點D為OA的中點,點M是線段AC上一點,且△OMD為等腰三角形,求M點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是大小相等的邊長為1的正方形構成的網格,,,,均為格點.與交于點.
[1].的值為_________.
[2].現只有無刻度的直尺,請在給定的網格中作出一個格點三角形.要求:①三角形中含有與大小相等的角;②可借助該三角形求得的三角函數值.請并在橫線上簡單說明你的作圖方法.____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D為AC上的一點,過D作DE⊥AC,過B作BE⊥AB,DE,BE交于點 E.已知BC=3,AB=5.
(1)證明:△EFB∽△ABC.
(2)若CD=1,請求出ED的長.
(3)連結AE,記CD=a,△AFE與△EBF面積的差為b.若存在實數t1,t2,m(其中t1≠t2),當a=t1或a=t2時,b的值都為m.求實數m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為弘揚中華傳統文化,某校開展“雙劇進課堂”的活動,該校童威隨機抽取部分學生,按四個類別:表示“很喜歡”,表示“喜歡”,表示“一般”,表示“不喜歡”,調查他們對漢劇的喜愛情況,將結果繪制成如下兩幅不完整的統計圖,根據圖中提供的信息,解決下列問題:
(1)這次共抽取_________名學生進行統計調查,扇形統計圖中,類所對應的扇形圓心角的大小為__________
(2)將條形統計圖補充完整
(3)該校共有1500名學生,估計該校表示“喜歡”的類的學生大約有多少人?
各類學生人數條形統計圖各類學生人數扇形統計圖
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com