【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為M的拋物線y=ax2+bx(a>0)經(jīng)過(guò)點(diǎn)A和x軸正半軸上的點(diǎn)B,AO=BO=2,∠AOB=120°.
(1)求a,b的值;
(2)連結(jié)OM,求∠AOM的大。
【答案】(1)a=,b=﹣;(2)∠AOM=150°.
【解析】
試題分析:(1)根據(jù)AO=OB=2,∠AOB=120°,求出A點(diǎn)坐標(biāo),以及B點(diǎn)坐標(biāo),進(jìn)而利用待定系數(shù)法求二次函數(shù)解析式;
(2)根據(jù)解析式求出M點(diǎn)坐標(biāo),再利用銳角三角函數(shù)關(guān)系求出∠FOM=30°,進(jìn)而得出答案.
解:(1)如圖,
過(guò)點(diǎn)A作AE⊥y軸于點(diǎn)E,
∵AO=OB=2,∠AOB=120°,
∴∠AOE=30°,
∴AE=1,EO=,
∴A點(diǎn)坐標(biāo)為:(﹣1,),B點(diǎn)坐標(biāo)為:(2,0),
將兩點(diǎn)代入y=ax2+bx得:
,
解得:.
∴a=,b=﹣;
(2)由(1)可知:拋物線的表達(dá)式為:y=x2﹣x;
過(guò)點(diǎn)M作MF⊥OB于點(diǎn)F,
∵y=x2﹣x=(x2﹣2x)=(x﹣1)2﹣,
∴M點(diǎn)坐標(biāo)為:(1,﹣),
∴tan∠FOM==,
∴∠FOM=30°,
∴∠AOM=30°+120°=150°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC的兩條角平分線的交點(diǎn),若∠BOC=110°,則∠A=______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P在△ABC的邊AC上,下列條件中,不能判斷△ABP∽△ACB的是( )
A.∠ABP=∠C B.∠APB=∠ABC C.AB2=APAC D.=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算或化簡(jiǎn):
(1)17﹣8÷(﹣2)2+4×(﹣3) (2)2(2a2+9b)+3(﹣5a2﹣4b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD各角之比∠A:∠B:∠C:∠D=1:2:3:4,則這個(gè)四邊形為( )
A.平行四邊形
B.菱形
C.等腰梯形
D.梯形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=ax2(a≠0)的圖象與a的符號(hào)有關(guān)的是( )
A.頂點(diǎn)坐標(biāo)
B.開(kāi)口方向
C.開(kāi)口大小
D.對(duì)稱軸
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b],對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2015]上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;
(2)若一次函數(shù)y=kx+b(k>0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com