【題目】如圖,水平面上有一個坡度i=1:2的斜坡AB,矩形貨柜DEFG放置在斜坡上,己知DE=2.5m.EF=2m,BF=3.5m,則點D離地面的高DH為 m.(結(jié)果保留根號)
【答案】2
【解析】解:作DH⊥BC,垂足為H,且與AB相交于S.
∵∠DGS=∠BHS,∠DSG=∠BSH,
∴∠GDS=∠SBH,
∴ = ,
∵DG=EF=2m,
∴GS=1m,
∴DS= = m,BS=BF+FS=3.5+(2.5﹣1)=5m,
設(shè)HS=xm,則BH=2xm,
∴x2+(2x)2=52 ,
∴x= m,
∴DH= + =2 m.
故答案是:2 .
【考點精析】根據(jù)題目的已知條件,利用關(guān)于坡度坡角問題的相關(guān)知識可以得到問題的答案,需要掌握坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為BC邊上的點,反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點D(m,2)和AB邊上的點E(3, ).
(1)求反比例函數(shù)的表達(dá)式和m的值;
(2)將矩形OABC的進(jìn)行折疊,使點O于點D重合,折痕分別與x軸、y軸正半軸交于點F,G,求折痕FG所在直線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一塊矩形木板,它的右上角有一個圓洞,現(xiàn)設(shè)想將它改造成火鍋餐桌桌面,要求木板大小不變,且使圓洞的圓心在矩形桌面的對角線的交點上.木工師傅想了一個巧妙的辦法,他測量了PQ與圓洞的切點K到點B的距離及相關(guān)數(shù)據(jù)(單位:cm),從點N沿折線NF﹣FM(NF∥BC,F(xiàn)M∥AB)切割,如圖1所示.圖2中的矩形EFGH是切割后的兩塊木板拼接成符合要求的矩形桌面示意圖(不重疊,無縫隙,不記損耗),則CN,AM的長分別是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一學(xué)校為了解九年級學(xué)生某次體育測試成績,現(xiàn)對這次體育測試成績進(jìn)行抽樣調(diào)查,結(jié)果統(tǒng)計如下,其中扇形統(tǒng)計圖中C組所在的扇形的圓心角為36° 被抽取的體育測試成績頻數(shù)分布表
組別 | 成績 | 頻數(shù) |
A | 20<x≤24 | 2 |
B | 24<x≤28 | 3 |
C | 28<x≤32 | 5 |
D | 32<x≤36 | b |
E | 36<x≤40 | 20 |
合計 | a |
根據(jù)上面的圖表提供的信息,回答下列問題:
(1)計算頻數(shù)分布表中a與b的值;
(2)根據(jù)C組28<x≤32的組中值30,估計C組中所有數(shù)據(jù)的和為;
(3)請估計該校九年級學(xué)生這次體育測試成績的平均分(結(jié)果取整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠B=120°,點M是AD的中點,點P由點A出發(fā),沿A→B→C→D作勻速運動,到達(dá)點D停止,則△APM的面積y與點P經(jīng)過的路程x之間的函數(shù)關(guān)系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,以點A為圓心,AB長為半徑畫弧,交CD于點E,連接AE、BE.作BF⊥AE于點F.
(1)求證:BF=AD;
(2)若EC= ﹣1,∠FEB=67.5°,求扇形ABE的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,二次函數(shù)y=ax2﹣a(b﹣1)x﹣ab(其中b<﹣1)的圖象與x軸交于點A、B,與y軸交于點C(0,1),過點C的直線交x軸于點D(2,0),交拋物線于另一點E.
(1)用b的代數(shù)式表示a,則a=;
(2)過點A作直線CD的垂線AH,垂足為點H.若點H恰好在拋物線的對稱軸上,求該二次函數(shù)的表達(dá)式;
(3)如圖②,在(2)的條件下,點P是x軸負(fù)半軸上的一個動點,OP=m.在點P左側(cè)的x軸上取點F,使PF=1.過點P作PQ⊥x軸,交線段CE于點Q,延長線段PQ到點G,連接EG、DG.若tan∠GDP=tan∠FQP+tan∠QDP,試判斷是否存在m的值,使△FPQ的面積和△EGQ的面積相等?若存在求出m的值,若不存在則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=120°,點D是BC的中點,點E是AB上的一點,點F是AC上的一點,∠EDF=90°,且BE=2,F(xiàn)C=7,則EF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE是半圓O的直徑,弦AB=BC=4 ,弦CD=DE=4,連結(jié)OB,OD,則圖中兩個陰影部分的面積和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com