【題目】如圖,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,則圖中陰影部分的面積為_________;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是一個邊長為2的等邊三角形,AD0⊥BC,垂足為點D0.過點D0作D0D1⊥AB,垂足為點D1;再過點D1作D1D2⊥AD0,垂足為點D2;又過點D2作D2D3⊥AB,垂足為點D3;……;這樣一直作下去,得到一組線段:D0D1,D1D2,D2D3,……,則線段D1D2的長為______,線段Dn-1Dn的長為______(n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)軸上,我們把表示數(shù)2的點定為核點,記作點,對于兩個不同的點和,若點,到點的距離相等,則稱點與點互為核等距點.如圖,點表示數(shù)-1,點表示數(shù)5,它們與核點的距離都是3個單位長度,我們稱點與點互為核等距點.
(1)已知點表示數(shù)3,如果點與點互為核等距點,那么點表示的數(shù)是______;
(2)已知點表示數(shù),點與點互為核等距點,
①如果點表示數(shù),求的值;
②對點進行如下操作:先把點表示的數(shù)乘以2,再把所得數(shù)表示的點沿著數(shù)軸向左移動5個單位長度得到點,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,OA、OD重合,AOB=120,COD=50,當AOB繞點O順時針旋轉到AO與CO重合的過程中,下列結論正確的是( )
①OB旋轉50②當OA平分COD時,BOC=95,③DOB+AOC=170,④BOC-AOD=70
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一點在由兩條公共端點的線段組成的一條折線上且把這條折線分成長度相等的兩部分,這點叫做這條折線的“折中點”.如圖,點D是折線A﹣C﹣B的“折中點”,請解答以下問題:
(1)當AC>BC時,點D在線段 上; 當AC=BC時,點D與 重合;當AC<BC時,點D在線段 上;
(2)若AC=18cm,BC=10cm,若∠ACB=90°,有一動點P從C點出發(fā),在線段CB上向點B運動,速度為2cm/s, 設運動時間是t(s), 求當t為何值,三角形PCD 的面積為10?
(3)若E為線段AC中點,EC=8cm,CD=6cm,求CB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點,
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=CD,DE⊥BC于點E,且DE=,AD=18,∠C=60°;
(1)BC=________
(2)若動點P從點D出發(fā),速度為2個單位/秒,沿DA向點A運動,同時,動點Q從點B出發(fā),速度為3個單位/秒,沿BC向點C運動,當一個動點到達端點時,另一個動點同時停止運動,設運動的時間為t秒。
①t=_______秒時,四邊形PQED是矩形;
②t為何值時,線段PQ與四邊形ABCD的邊構成平行四邊形;
③是否存在t值,使②中的平行四邊形是菱形?若存在,請求出t值,若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(﹣1,﹣4),其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中
(1)A→C( , ),B→D( , );
(2)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;
(3)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),請在圖中標出依次行走停點E、F、M、N的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象經過點,且與軸相交于點,與軸交于點,與正比例函數(shù)的圖象相交于點,點的橫坐標為1.
(1)求,的值;
(2)請直接寫出不等式的解集;
(3)為射線上一點,過作軸的平行線交于點,當時,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com