【題目】如圖,已知,OA、OD重合,AOB=120COD=50,當AOB繞點O順時針旋轉(zhuǎn)到AOCO重合的過程中,下列結(jié)論正確的是( )

OB旋轉(zhuǎn)50②當OA平分COD時,BOC=95,DOB+AOC=170BOC-AOD=70

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

【答案】D

【解析】分析根據(jù)旋轉(zhuǎn)的性質(zhì)和角的和差倍分計算進行判斷即可

詳解:∵∠DOC=50°,∴OAOD旋轉(zhuǎn)到OC,旋轉(zhuǎn)角=∠DOC=50°,∴OB旋轉(zhuǎn)50°,故①正確

OA平分COD,∴∠AOC=COD=25°,∴∠BOC=∠AOB-∠AOC=120°-25°=95°,故②正確;

DOB+∠AOC=∠DOA+∠AOB+∠AOC=∠DOA+∠AOC +∠AOB=∠DOC +∠AOB=50°+120°=170°,故③正確;

BOC-AOD=∠AOB-∠AOC-∠AOD=∠AOB-∠DOC=120°-50°=70°,故④正確.

綜上所述:①②③④都正確.

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對任意一個正整數(shù)m,如果m=k(k+1),其中k是正整數(shù),則稱m矩數(shù)”,k m的最佳拆分點.例如,56=7×(7+1),則56是一個矩數(shù)”,756的最佳拆分點.

(1)求證:若矩數(shù)”m3的倍數(shù),則m一定是6的倍數(shù);

2)把矩數(shù)”p矩數(shù)”q的差記為 Dp,q),其中pq,Dp,q)>0.例如,20=4×5,6=2×3,則 D20,6=206=14.若矩數(shù)”p的最佳拆分點為t矩數(shù)”q的最佳拆分點為s,當 Dp,q=30時,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在的青少年由于沉迷電視、手機、網(wǎng)絡(luò)游戲,視力日漸減退,重慶某校九年級一班班主任為了了解可能影響學(xué)生視力下降的原因,對本班進行了一個最喜愛的娛樂調(diào)查,每個學(xué)生在A(看電視)、B(玩手機)、C(玩網(wǎng)絡(luò)游戲)、D(其它)四種類型中只能選一項,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)這兩幅統(tǒng)計圖解答下列問題:

(1)扇形統(tǒng)計圖中C所占的百分比為 ,該班學(xué)生由于玩網(wǎng)絡(luò)游戲而視力下降的學(xué)生有 人.

(2)為了讓學(xué)生深刻認識保護視力的重要性,學(xué)校組織保護視力 健康人生的演講比賽,班主任從選擇D類型的學(xué)生中隨機抽選兩名學(xué)生參加比賽.已知D類型中有女生3人,其余的為男生.請求出剛好抽到的學(xué)生全部為女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把按一定規(guī)律排列的一列數(shù)稱為數(shù)列,若對于一個數(shù)列中任意相鄰有序的三個數(shù),,,總滿足,則稱這個數(shù)列為理想數(shù)列.

1)在數(shù)列①,,;②3,-2,-1,1中,是理想數(shù)列的是______(只填序號即可)

2)如果數(shù)列,是理想數(shù)列,求的值;

3)若數(shù)列,是理想數(shù)列,求代數(shù)式的值;

4)請寫出一個由五個不同正整數(shù)組成的理想數(shù)列:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 (n為正整數(shù))都在數(shù)軸上,點在原點O的左邊,且; 在原點O的右邊,且;在原點O的左邊,且; 原點O的右邊,且;.依照上述規(guī)律,點,所表示的數(shù)分別為( )

A.1008,-1008B.1008,-1009

C.2016,-2017D.2016,2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標系中,△ABC≌△DEF, ABBC=5.若A點的坐標為(﹣3,1),B、C兩點在直線y=﹣3上,D、E兩點在y軸上,則點F的橫坐標為( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,則圖中陰影部分的面積為_________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EFAD,∠1=∠2,∠BAC70°,求∠AGD(請?zhí)羁眨?/span>

解:∵EFAD

∴∠2      

又∵∠1=∠2

∴∠1=∠3   

AB      

∴∠BAC+   180°(   

∵∠BAC70°(   

∴∠AGD      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校開展雙劇進課堂的活動,該校童威隨機抽取部分學(xué)生,按四個類別:表示很喜歡,表示喜歡,表示一般,表示不喜歡,調(diào)查他們對漢劇的喜愛情況,將結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息,解決下列問題:

1)這次共抽取_________名學(xué)生進行統(tǒng)計調(diào)查,扇形統(tǒng)計圖中,類所對應(yīng)的扇形圓心角的大小為__________

2)將條形統(tǒng)計圖補充完整

3)該校共有1500名學(xué)生,估計該校表示喜歡類的學(xué)生大約有多少人?

各類學(xué)生人數(shù)條形統(tǒng)計圖各類學(xué)生人數(shù)扇形統(tǒng)計圖

查看答案和解析>>

同步練習(xí)冊答案