【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 ,為什么?
【答案】⑴圍成矩形長(zhǎng)為30m,寬為25 m時(shí),能使矩形面積為750㎡。
⑵不能。
【解析】
試題(1)設(shè)所圍矩形ABCD的長(zhǎng)AB為x米,則寬AD為米,根據(jù)矩形面積的計(jì)算方法列出方程求解;(2)假使矩形面積為810米,則方程無(wú)實(shí)數(shù)根,所以不能?chē)删匦螆?chǎng)地.
試題解析:(1)設(shè)所圍矩形ABCD的長(zhǎng)AB為x米,則寬AD為米.
依題意,得,即.
解此方程,得x1=30,x2=50.
∵墻的長(zhǎng)度不超過(guò)45m,∴x2=50不合題意,應(yīng)舍去.
當(dāng)x=30時(shí),.
答:當(dāng)所圍矩形的長(zhǎng)為30m、寬為25m時(shí),能使矩形的面積為750m2.
(2)不能.理由如下:
由得.
∵,
∴方程沒(méi)有實(shí)數(shù)根.
∴不能使所圍矩形場(chǎng)地的面積為810m2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)是一個(gè)橫斷面為拋物線(xiàn)形狀的拱橋,當(dāng)水面寬為時(shí),拱頂與水面距離為.
(1)請(qǐng)你在圖(2)中,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使該拋物線(xiàn)拱橋的函數(shù)關(guān)系式符合形式,并求此時(shí),函數(shù)關(guān)系式;
(2)當(dāng)水面上升時(shí),求水面寬度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4a﹣b=0;②c<0;③﹣3b+4c>0;④4a﹣2b≥at2+bt(t為實(shí)數(shù));⑤點(diǎn)(﹣,y1),(﹣,y2),(﹣,y3)是該拋物線(xiàn)上的點(diǎn),則y1<y2<y3,其中正確的結(jié)論有( 。
A. ②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD平分∠BAC,AB=AC,連接BC,交AD于點(diǎn)E,下列說(shuō)法正確的有( )
①∠BAC=∠ACB;②S四邊形ABDC=ADCE;③AB2+CD2=AC2+BD2;④AB﹣BD=AC﹣CD.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)正方形ABCD頂點(diǎn)B,C的⊙O與AD相切于點(diǎn)E,與CD相交于點(diǎn)F,連接EF.
(1)求證:EF平分∠BFD.
(2)若tan∠FBC=,DF=,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅行社推出一條成本價(jià)為500元/人的省內(nèi)旅游線(xiàn)路.游客人數(shù)(人/月)與旅游報(bào)價(jià)(元/人)之間的關(guān)系為,已知:旅游主管部門(mén)規(guī)定該旅游線(xiàn)路報(bào)價(jià)在800元/人~1200元/人之間.
(1)要將該旅游線(xiàn)路每月游客人數(shù)控制在200人以?xún)?nèi),求該旅游線(xiàn)路報(bào)價(jià)的取值范圍;
(2)求經(jīng)營(yíng)這條旅游線(xiàn)路每月所需要的最低成本;
(3)當(dāng)這條旅游線(xiàn)路的旅游報(bào)價(jià)為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷(xiāo)考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷(xiāo)售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿(mǎn)足一次函數(shù)關(guān)系:當(dāng)銷(xiāo)售單價(jià)為22元時(shí),銷(xiāo)售量為36本;當(dāng)銷(xiāo)售單價(jià)為24元時(shí),銷(xiāo)售量為32本.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)文具店每周銷(xiāo)售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷(xiāo)售單價(jià)是多少元?
(3)設(shè)該文具店每周銷(xiāo)售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷(xiāo)售單價(jià)定為多少元時(shí),才能使文具店銷(xiāo)售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA在y軸的正半軸上,C在x軸的正半軸上,已知A(0,8)、C(10,0),作∠AOC的平分線(xiàn)交AB于點(diǎn)D,連接CD,過(guò)點(diǎn)D作DE⊥CD交OA于點(diǎn)E.
(1)求點(diǎn)D的坐標(biāo);
(2)求證:△ADE≌△BCD;
(3)拋物線(xiàn)y=x2﹣x+8經(jīng)過(guò)點(diǎn)A、C,連接AC.探索:若點(diǎn)P是x軸下方拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作平行于y軸的直線(xiàn)交AC于點(diǎn)M.是否存在點(diǎn)P,使線(xiàn)段MP的長(zhǎng)度有最大值?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線(xiàn);
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線(xiàn)與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線(xiàn);
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線(xiàn);
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線(xiàn)y=ax2+ax+b(a≠0)與直線(xiàn)y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線(xiàn)的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線(xiàn)與拋物線(xiàn)的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線(xiàn)y=﹣2x與拋物線(xiàn)在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線(xiàn)段GH沿y軸向上平移t個(gè)單位(t>0),若線(xiàn)段GH與拋物線(xiàn)有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com