【題目】如圖,二次函數(shù)x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)PA點(diǎn)出發(fā)向點(diǎn)D運(yùn)動(dòng),點(diǎn)QDB上,且PCQ=45°,則封閉圖形DPCQ(陰影部分)面積的變化情況是(

A.一直變大B.始終不變C.先增大后減少D.先減少后增大

【答案】C

【解析】

先證明四邊形ABCD是正方形,將△ACP繞點(diǎn)C旋轉(zhuǎn)90°,得到△CAP△CBP’進(jìn)而證得△CPQ△CP’Q,得到PQ=PQ’,CB=CH=CA,△CHP△CAP△CHQ△CBQ,得到PH=PA,QH=QB,S四邊形CPDQ=S正方形ABCD-SCAP-SCBQ=S正方形ABCD-SCQP’,當(dāng)點(diǎn)PAD中點(diǎn)時(shí),PQ最短,當(dāng)QP’最短時(shí),△CQP’的面積最小,此時(shí)四邊形CPDQ的面積最大,故可得到四邊形CPDQ的面積先增大后減。

如圖,令=0,解得x1=-2,x2=2,

A(-2,0), B(2,0),

x=0,解得y=-2

C0,-2

D0,2

AO=BO=CO=DO,AB⊥CD

則四邊形ABCD是正方形,

△ACP繞點(diǎn)C旋轉(zhuǎn)90°,過(guò)C點(diǎn)作CHQPH點(diǎn),

△CAP△CBP’

PCP’=∠PCB+∠BCP’=∠PCB+∠ACP =90°

PCQ=45°

P’CQ=45°,又CQ=CQ,CP=CP’

△CPQ△CP’Q

PQ=PQ’,

CHPQ,CBQP’

CB=CH=CA,

CP=CP

△CHP△CAPHL),△CHQ△CBQHL),

PH=PA,QH=QB

S四邊形CPDQ=S正方形ABCD-SCAP-SCBQ=S正方形ABCD-SCQP’

當(dāng)點(diǎn)PAD中點(diǎn)時(shí),PQ最短,即QP’最短時(shí),△CQP’的面積最小,

此時(shí)四邊形CPDQ的面積最大,

故可得到四邊形CPDQ的面積先增大后減。

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九龍坡區(qū)某社區(qū)開(kāi)展全民讀書活動(dòng),以豐富人們業(yè)余文化生活現(xiàn)計(jì)劃籌資30000元用于購(gòu)買科普書籍和文藝刊物

(1)計(jì)劃購(gòu)買文藝刊物的資金不少于購(gòu)買科普書籍資金的2倍,那么最少用多少資金購(gòu)買文藝刊物?

(2)經(jīng)初步了解,有200戶居民自愿參與集資,那么平均每戶需集資150元.經(jīng)籌委會(huì)進(jìn)步宣傳,自愿參加的戶數(shù)在200戶的基礎(chǔ)上增加了a%(其中a>50),如果每戶平均集資在150元的基礎(chǔ)上減少a%,那么實(shí)際籌資將比計(jì)劃籌資多6000元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,完成(1)-(3).

數(shù)學(xué)課上,老師出示了這樣一道題:

如圖,ABC中,DBC中點(diǎn),且AD=AC,MAD中點(diǎn),連結(jié)CM并延長(zhǎng)交ABN.

探究線段AN、MNCN之間的數(shù)量關(guān)系,并證明.

同學(xué)們經(jīng)過(guò)思考后,交流了自已的想法:

小明:通過(guò)觀察和度量,發(fā)現(xiàn)線段ANAB之間存在某種數(shù)量關(guān)系.”

小強(qiáng):通過(guò)倍長(zhǎng)不同的中線,可以得到不同的結(jié)論,但都是正確的,大家就大膽的探究吧.”

小偉:通過(guò)構(gòu)造、證明相似三角形、全等三角形,就可以將問(wèn)題解決.”

......

老師: “若其他條件不變,設(shè)AB=a,則可以用含a的式子表示出線段CM的長(zhǎng).”

1)探究線段AN、AB之間的數(shù)量關(guān)系,并證明;

2)探究線段AN、MN、CN之間的數(shù)量關(guān)系,并證明;

3)設(shè)AB=a,求線段CM的長(zhǎng)(用含a的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了落實(shí)國(guó)務(wù)院的指示精神,地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為w元.

(1)求w與x之間的函數(shù)關(guān)系式;

(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系內(nèi),已知A(2,3),B(4,1),直線l過(guò)P(m,0),A、B關(guān)于l的對(duì)稱點(diǎn)分別為A、B,請(qǐng)利用直尺(無(wú)刻度)和圓規(guī)按下列要求作圖.

1)當(dāng)AB重合時(shí),請(qǐng)?jiān)趫D1中畫出點(diǎn)P位置,并求出m的值;

2)當(dāng)A、B都落在y軸上時(shí),請(qǐng)?jiān)趫D2中畫出直線l,并求出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸相交于點(diǎn)A、B,且過(guò)點(diǎn)C(4,3).

(1)求的值和該拋物線頂點(diǎn)P的坐標(biāo);

(2)將該拋物線向左平移,記平移后拋物線的頂點(diǎn)為P′,當(dāng)四邊形APPB為平行四邊形時(shí),求平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(1,2)B(0,-1)且對(duì)稱軸為x2

1)求這個(gè)二次函數(shù)的解析式;

2)拋物線上點(diǎn)P(2,m)在圖象上,求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一個(gè)木制正方體的表面涂上顏色,然后將正方體分割成64個(gè)大小相同的小正方體.從這些小正方體中任意取出一個(gè),求取出的小正方體:

1)三面涂有顏色的概率;

2)兩面涂有顏色的概率;

3)各個(gè)面都沒(méi)有顏色的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 x 軸交于點(diǎn) A、B,與 y 軸交于點(diǎn) C,且 OC2OB, 點(diǎn) D 為線段 OB 上一動(dòng)點(diǎn)(不與點(diǎn) B 重合),過(guò)點(diǎn) D 作矩形 DEFH,點(diǎn) H、F 在拋物線上,點(diǎn) E x 上.

1)求拋物線的解析式;

2)當(dāng)矩形 DEFH 的周長(zhǎng)最大時(shí),求矩形 DEFH 的面積;

3)在(2)的條件下,矩形 DEFH 不動(dòng),將拋物線沿著 x 軸向左平移 m 個(gè)單位,拋物線與矩形 DEFH的邊交于點(diǎn) MN,連接 M、N.若 MN 恰好平分矩形 DEFH 的面積,求 m 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案