【題目】如圖(1),在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A坐標(6,0),點B在y軸上,點C在第三象限角平分線上,動點P、Q同時從點O出發(fā),點P以1cm/s 的速度沿O→A→B勻速運動到終點B;點Q沿O→C→B→A運動到終點A,點Q在線段OC、CB、BA上分別作勻速運動,速度分別為V1cm/s、V2cm/s、V3cm/s.設點P運動的時間為t(s),△OPQ的面積為S(cm2),已知S與t之間的部分函數(shù)關(guān)系如圖(2)中的曲線段OE、曲線段EF和線段FG所示.

(1)V1=  ,V2=  ;

(2)求曲線段EF的解析式;

(3)補全函數(shù)圖象(請標注必要的數(shù)據(jù));

(4)當點P、Q在運動過程中是否存在這樣的t,使得直線PQ把四邊形OABC的面積分成11:13兩部分,若存在直接寫出t的值;若不存在,請說明理由.

【答案】(1)3,;(2) S=t=t2+t(2t6;(3)見解析;(4)見解析.

【解析】

(1)觀察圖象可知,t=2時,點Q運動到點C位置,t=6時,點Q運動到點B位置.如圖1中,作CEx軸于E,CFOBF.利用圖中信息,求出點C、B坐標即可解決問題.

(2)如圖1中,當點Q在線段BC上時,作QNOEN,交CFM.由QMBF,可得=,推出=,可得QM=,QN=,可得S=t=t2+t(2<t≤6).

(3)利用描點法即可解決問題;

(4)分兩種情形構(gòu)建方程即可解決問題;

解:(1)觀察圖象可知,t=2時,點Q運動到點C位置,t=6時,點Q運動到點B位置.

如圖1中,作CEx軸于E,CFOBF.

由題意6=×2×CE,

CE=6,

∵∠COE=45°,

CE=OE=OF=CF=6,OC=6,

V1==3cm/s,

RtCBF中,BC==2,

V2==cm/s,

故答案為3,

(2)如圖1中,當點Q在線段BC上時,作QNOEN,交CFM.

QMBF,

=,

=

QM=,QN=

S=t=t2+t(2<t≤6).

(3)在S=t=t2+t(2<t≤6)上取點(3,),(4,14),

函數(shù)圖象如圖所示:

(4)如圖3中,由題意滿足條件的點Q在線段BC上,點P在線段OA上.

∵四邊形AOCB的面積為48,

∴當四邊形POCQ的面積=2226時,滿足條件,

S四邊形POCQ=SECQ+SPEQ,

<>則有:×6×+(6+t)=22×6×+(6+t)=26,

解得t=﹣17+或﹣17+3(負根已經(jīng)舍棄).

t=﹣17+或﹣17+3s時,直線PQ把四邊形OABC的面積分成11:13兩部分.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個條件為_______(只添加一個條件即可);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C是直線l上的三個點,∠DAB=∠DBE=∠ECBa,且BDBE

1)求證:ACAD+CE;

2)若a120°,點F在直線l的上方,BEF為等邊三角形,補全圖形,請判斷ACF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點為邊的中點,過點作射線,過點 于點,過點于點,連接并延長,交于點.

(1)求證:

(2),求證: 為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC,∠C=90°,AC=12BC=6,一條線段PQ=ABP、Q兩點分別在AC和過點A且垂直于AC的射線AX上運動,要使△ABC△QPA全等,則AP= ______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,AB=AC,D為斜邊BC的中點,E、F分別為AB、AC邊上的點,且DE⊥DF,若BE=8cm,CF=6cm

1)判斷△DEF的形狀,并說明理由

2)求△DEF的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的部分圖象如圖所示,則關(guān)于的一元二次方程的解為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系的網(wǎng)格中,橫、縱坐標均為整數(shù)的點叫做格點,例如:,都是格點.請選擇適當?shù)母顸c,用無刻度的直尺在網(wǎng)格中完成下列畫圖保留連線的痕跡,不要求說明理由.

1)若點為格點,以點、、為頂點的四邊形是軸對稱圖形,在圖1中畫出所有符合題意的四邊形,并寫出點的坐標以及四邊形的面積;

2)如圖2,在線段上畫點,使得.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,兩組對邊分別平行的四邊形叫做平行四邊形。平行四邊形的內(nèi)角和、外角和都等于360°,根據(jù)三角形的學習經(jīng)驗,請你再寫出平行四邊形的兩條性質(zhì);并證明其中一條性質(zhì)

1______________________________________________

2________________________________________________

查看答案和解析>>

同步練習冊答案