【題目】把一條12個(gè)單位長(zhǎng)度的線段分成三條線段,其中一條線段成為4個(gè)單位長(zhǎng)度,另兩條線段長(zhǎng)都是單位長(zhǎng)度的整數(shù)倍.

(1)不同分段得到的三條線段能組成多少個(gè)不全等的三角形?用直尺和圓規(guī)作這些三角形(用給定的單位長(zhǎng)度,不寫作法,保留作圖痕跡);
(2)求出(1)中所作三角形外接圓的周長(zhǎng).

【答案】
(1)

解:由題意得:三角形的三邊長(zhǎng)分別為:4,4,4;3,4,5;

即不同分段得到的三條線段能組成2個(gè)不全等的三角形,如圖所示


(2)

解:如圖所示:

當(dāng)三邊的單位長(zhǎng)度分別為3,4,5,可知三角形為直角三角形,此時(shí)外接圓的半徑為2.5;

當(dāng)三邊的單位長(zhǎng)度分別為4,4,4.三角形為等邊三角形,此時(shí)外接圓的半徑為 ,

∴當(dāng)三條線段分別為3,4,5時(shí)其外接圓周長(zhǎng)為:2π×2.5=5π;

當(dāng)三條線段分別為4,4,4時(shí)其外接圓周長(zhǎng)為:2π× = π


【解析】(1)利用三角形三邊關(guān)系進(jìn)而得出符合題意的圖形即可;(2)利用三角形外接圓作法,首先作出任意兩邊的垂直平分線,即可得出圓心位置,進(jìn)而得出其外接圓.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,BD是一條對(duì)角線,點(diǎn)P在射線CD上(與點(diǎn)C、D不重合),連接AP,平移△ADP,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCQ,過(guò)點(diǎn)Q作QH⊥BD于H,連接AH,PH.

(1)若點(diǎn)P在線段CD上,如圖1.
①依題意補(bǔ)全圖1;
②判斷AH與PH的數(shù)量關(guān)系與位置關(guān)系并加以證明;
(2)若點(diǎn)P在線段CD的延長(zhǎng)線上,且∠AHQ=152°,正方形ABCD的邊長(zhǎng)為1,請(qǐng)寫出求DP長(zhǎng)的思路.(可以不寫出計(jì)算結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】星期天8:00~8:30,燃?xì)夤窘o平安加氣站的儲(chǔ)氣罐注入天然氣.之后,一位工作人員以每車20立方米的加氣量,依次給在加氣站排隊(duì)等候的若干輛車加氣.儲(chǔ)氣罐中的儲(chǔ)氣量y(立方米)與時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示.

(1)8:00~8:30,燃?xì)夤鞠騼?chǔ)氣罐注入了多少立方米的天然氣;

(2)當(dāng)x≥0.5時(shí),求儲(chǔ)氣罐中的儲(chǔ)氣量y(立方米)與時(shí)間x(小時(shí))的函數(shù)解析式;

(3)請(qǐng)你判斷,正在排隊(duì)等候的第18輛車能否在當(dāng)天10:30之前加完氣?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一條細(xì)繩系著一個(gè)小球在平面內(nèi)擺動(dòng),已知細(xì)繩從懸掛點(diǎn)O到球心的長(zhǎng)度為50厘米,小球在帶你B位置時(shí)達(dá)到最低點(diǎn),當(dāng)小球在左側(cè)點(diǎn)A時(shí)與最低點(diǎn)B時(shí)細(xì)繩相應(yīng)所成的角度∠AOB=37°.(取sin37°=0.6,cos37°=0.8,tan37°=0.75)
(1)求點(diǎn)A與點(diǎn)B的高度差BC的值.
(2)如圖2,若在點(diǎn)O的正下方有一個(gè)阻礙物P,當(dāng)小球從左往右落到最低處后,運(yùn)動(dòng)軌跡改變,變?yōu)橐訮為圓心,PB為半徑繼續(xù)向右擺動(dòng),當(dāng)擺動(dòng)至與點(diǎn)A在同一水平高度的點(diǎn)D時(shí),滿足PD部分細(xì)繩與水平線的夾角∠DPQ=30°,求OP的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E為正方形ABCD中AD邊上的一個(gè)動(dòng)點(diǎn),AB=16,以BE為邊畫正方形BEFG,邊EF與邊CD交于點(diǎn)H.

(1)當(dāng)E為邊AD的中點(diǎn)時(shí),求DH的長(zhǎng);
(2)當(dāng)tan∠ABE= 時(shí),連接CF,求CF的長(zhǎng);
(3)連接CE,求△CEF面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)圓錐的側(cè)面積是2πcm2 , 它的側(cè)面展開(kāi)圖是一個(gè)半圓,則這個(gè)圓錐的高為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC在平面直角坐標(biāo)系中的位置如圖所示,

(1)先畫出ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1,再畫出△A1B1C1關(guān)于y軸對(duì)稱的圖形△A2B2C2;

(2)直接寫出△A2B2C2各頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時(shí)魚竿可收縮,完全收縮后,魚竿長(zhǎng)度即為第1節(jié)套管的長(zhǎng)度(如圖1所示):使用時(shí),可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長(zhǎng)50cm,第2節(jié)套管長(zhǎng)46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時(shí),為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長(zhǎng)度的重疊,設(shè)其長(zhǎng)度為xcm.

(1)請(qǐng)直接寫出第5節(jié)套管的長(zhǎng)度;

(2)當(dāng)這根魚竿完全拉伸時(shí),其長(zhǎng)度為311cm,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開(kāi)機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開(kāi)始下降,此時(shí)水溫(℃)與開(kāi)機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:45)能喝到不超過(guò)50℃的水,則接通電源的時(shí)間可以是當(dāng)天上午的( )

A.7:20
B.7:30
C.7:45
D.7:50

查看答案和解析>>

同步練習(xí)冊(cè)答案