【題目】如圖,BD是△ABC的角平分線,點(diǎn)E、F分別在BC、AB上,且DE∥AB,∠DEF=∠A,EF與BD相交于點(diǎn)M,以下結(jié)論:①△BDE是等腰三角形;②四邊形AFED是菱形;③BE=AF;④若AF∶BF=3∶4,則△DEM的面積:△BAD的面積=9∶49,以上結(jié)論正確的是( )
A. ①②③④
B. ①③④
C. ①③
D. ③④
【答案】B
【解析】
根據(jù)BD是△ABC的角平分線與DE∥AB易證∠DBE=∠BDE,故△BDE是等腰三角形;可證EF∥AD,四邊形ADEF為平行四邊形而不是菱形,即可得BE=AF,再連接DF,得△DEM∽△BFM,再求出相似比,利用面積比等于相似比的平方即求得△DEM的面積與△BAD的面積之比.
∵BD是△ABC的角平分線,
∴∠DBE=∠ABD,
∵DE∥AB,
∴∠ABD=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE,
∴△BDE是等腰三角形,故①正確;
∵DE∥AB,
∴∠BAC+∠ADE=180°,
∵∠DEF=∠BAC,
∴∠DEF+∠ADE=180°,
∴EF∥AD,
∴四邊形ADEF為平行四邊形,故②錯(cuò)誤;
∴AF=DE,
∴BE=AF;故③正確;
如圖,連接DF,
∵DE∥AB,
∴△DEM∽△BFM,
∴=,
∵DE=AF,AF∶BF=3∶4,
∴==,==,
∴=,
∴S四邊形AFMD=S△DEM,S△BFM=S△DEM,
∴△DEM的面積∶△BAD的面積=9∶49,故④正確,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,sinC=,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ADE,點(diǎn)B、C分別與點(diǎn)D、E對(duì)應(yīng),AD與邊BC交于點(diǎn)F.如果AE∥BC,那么BF的長(zhǎng)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點(diǎn)O,D為半圓上一點(diǎn),AC∥OD,AD與OC交于點(diǎn)E,連結(jié)CD、BD,給出以下三個(gè)結(jié)論:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知△ABC,任取一點(diǎn)O,連接AO,BO,CO,并取它們的中點(diǎn)D,E,F,得△DEF,則下列說法:①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;③△ABC與△DEF的周長(zhǎng)比為1∶2;④△ABC與△DEF的面積比為4∶1. 正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,□ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E、F、G、H分別是OA、OB、OC、OD的中點(diǎn),那么□ABCD與四邊形EFGH是否是位似圖形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,D是AB上的一點(diǎn)(不與點(diǎn)A、B重合),DE∥BC,交AC于點(diǎn)E,則的最大值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,航拍無人機(jī)從A處測(cè)得一幢建筑物頂部B的仰角為45°,測(cè)得底部C的俯角為60°,此時(shí)航拍無人機(jī)與該建筑物的水平距離AD為110m,那么該建筑物的高度BC約為_____m(結(jié)果保留整數(shù),≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,BC=10,AB⊥AC,點(diǎn)P從點(diǎn)B出發(fā)沿著B→A→C的路徑運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā)沿著A→C→D的路徑以相同的速度運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,y=PQ2,下列圖象中大致反映y與x之間的函數(shù)關(guān)系的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.
(1)求證:∠AEB=∠ADC;
(2)連接DE,若∠ADC=105°,求∠BED的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com