【題目】如圖所示,點A、B分別是∠NOP、MOP平分線上的點,ABOP于點E,BCMN于點C,ADMN于點D,下列結論錯誤的是(  )

A. ADBCAB B. 與∠CBO互余的角有兩個

C. AOB=90° D. OCD的中點

【答案】B

【解析】

根據(jù)角平分線上的點到角的兩邊距離相等可得AD=AE,BC=BE,利用角平分線的定義和平角的性質(zhì)可得到∠AOB的度數(shù),再利用HL證明RtAODRtAOE全等根據(jù)全等三角形對應邊相等可得OD=OE,同理可得OC=OE然后求出∠AOB=90°,然后對各選項分析判斷即可得解

∵點A,B分別是∠NOP,MOP平分線上的點AD=AE,BC=BE

AB=AE+BEAB=AD+BC,A選項結論正確;

與∠CBO互余的角有∠COBEOB,OADOAE4,B選項結論錯誤;

∵點A、B分別是∠NOP、∠MOP平分線上的點,∴∠AOE=EOD,BOC=MOE,∴∠AOB=(∠EOD+MOE)=×180°=90°,C選項結論正確;

RtAODRtAOE,,RtAODRtAOEHL),OD=OE,同理可得OC=OE,∴OC=OD=OE,∴點OCD的中點,D選項結論正確

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊完成某項工程,先由甲單獨做10天,乙隊再加入合作.工進度滿足如圖所示.

1)求工作量y與工作時間x(天)之間的函數(shù)關系式;

2)這項工程全部完成需要多少天?

3)求乙隊單獨完成這項工程的天數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3AD=4,則ED的長為

A B3 C1 D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,ABC=60°,P是射線BD上一動點,以AP為邊向右側作等邊APE,點E的位置隨點P的位置變化而變化

1)如圖1,當點E在菱形ABCD內(nèi)部或邊上時,連接CEBPCE的數(shù)量關系是_________,CEAD的位置關系是____________________;

2)當點E在菱形ABCD外部時,1中的結論是否還成立?若成立,請予以證明;若不成立,請說明理由選擇圖2,圖3中的一種情況予以證明或說理).

3如圖4,當點P在線段BD的延長線上時,連接BE,若,求四邊形ADPE的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,,、、的三條內(nèi)角平分線.那么,的面積等于________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我區(qū)某中學對學生會倡導的“獻愛心”捐款活動進行抽樣調(diào)查,被調(diào)查的學生捐款情況如圖所示。

(1)該校共調(diào)查了______名學生。

(2)捐款15元以上的學生頻率是_______。

(3)若該校共有1800名學生,估計全校學生一共捐款至少多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列五個命題中的真命題有(

兩條直線被第三條直線所截,同位角相等;三角形的一個外角等于它的兩個內(nèi)角之和;兩邊分別相等且一組內(nèi)角相等的兩個三角形全等;有理數(shù)與數(shù)軸上的點一一對應;實數(shù)分為有理數(shù)、無理數(shù).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,因為,所以可用、來表示的小數(shù)部分.請解答下列問題:

(1)的整數(shù)部分是__________,小數(shù)部分是__________.

(2)如果的整數(shù)部分為,小數(shù)部分為,求的值.

(3)已知,其中是整數(shù),且.則求的平方根的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位招聘員工,采取筆試與面試相結合的方式進行,兩項成績的原始分均為100分.前6名選手的得分如下:

    序號

項目

1

2

3

4

5

6

筆試成績/

85

92

84

90

84

80

面試成績/

90

88

86

90

80

85

根據(jù)規(guī)定,筆試成績和面試成績分別按一定的百分比折合成綜合成績(綜合成績的滿分仍為100)

16名選手筆試成績的中位數(shù)是________分,眾數(shù)是________分;

2現(xiàn)得知1號選手的綜合成績?yōu)?/span>88分,求筆試成績和面試成績各占的百分比;

3求出其余五名選手的綜合成績,并以綜合成績排序確定前兩名人選.

查看答案和解析>>

同步練習冊答案