【題目】如圖,中,交于,平分交于,為延長(zhǎng)線上一點(diǎn),交的延長(zhǎng)線于,的延長(zhǎng)線交于,連接,下列結(jié)論:①;②∠AGH=∠BAE+∠ACB;③,其中正確的結(jié)論有( )個(gè).
A.0B.1C.2D.3
【答案】D
【解析】
如圖,設(shè)FG交AE延長(zhǎng)線于P,過(guò)E作EM⊥AB于M,EN⊥AC于N,根據(jù)垂直的定義及直角三角形兩銳角互余的關(guān)系即可得出∠DAE=∠F,可得①正確;根據(jù)同角的余角相等可得∠AGH=∠AED,根據(jù)外角的性質(zhì)及角平分線的定義即可得出∠AGH=∠BAE+∠ACB,可得②正確,根據(jù)角平分線的性質(zhì)可得EM=EN,利用三角形面積公式即可得出,可得③正確,綜上即可的答案.
如圖,設(shè)FG交AE延長(zhǎng)線于P,過(guò)E作EM⊥AB于M,EN⊥AC于N,
∵,AD⊥BC,
∴∠F+∠FEP=90°,∠DAE+∠AED=90°,
∵∠AED=∠FEP,
∴∠DAE=∠F,故①正確,
∵∠DAE+∠AED=90°,∠DAE+∠AGH=90°,
∴∠AED=∠AGH,
∵AE為∠BAC的角平分線,
∴∠BAE=∠EAC,
∵∠AED=∠EAC+∠ACB,
∴∠AGH=∠BAE+∠ACB,故②正確,
∵AE是∠BAC的角平分線,EM⊥AB,EN⊥AC,
∴EM=EN,
∴S△AEB:S△AEC=AB·EM:AC·EN=AB:AC,故③正確,
綜上所述:正確的結(jié)論有①②③,共3個(gè),
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)是2,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接MN,則在點(diǎn)M運(yùn)動(dòng)過(guò)程中,線段MN長(zhǎng)度的最小值是( 。
A. B. 1 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過(guò)A、B兩點(diǎn),并與過(guò)A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.
(1)求拋物線解析式及對(duì)稱(chēng)軸;
(2)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使四邊形ACPO的周長(zhǎng)最小?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)M為y軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)M作直線AC的垂線,垂足為N.問(wèn):是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與△AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖①,在△ABD與△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易證:△ABD≌△CAE.(不需要證明)
特例探究:如圖②,在等邊△ABC中,點(diǎn)D、E分別在邊BC、AB上,且BD=AE,AD與CE交于點(diǎn)F.求證:△ABD≌△CAE.
歸納證明:如圖③,在等邊△ABC中,點(diǎn)D、E分別在邊CB、BA的延長(zhǎng)線上,且BD=AE.△ABD與△CAE是否全等?如果全等,請(qǐng)證明;如果不全等,請(qǐng)說(shuō)明理由.
拓展應(yīng)用:如圖④,在等腰三角形中,AB=AC,點(diǎn)O是AB邊的垂直平分線與AC的交點(diǎn),點(diǎn)D、E分別在OB、BA的延長(zhǎng)線上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖中,,的垂直平分線分別交于,,垂足分別是,.
(1)若,求的周長(zhǎng).
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(實(shí)驗(yàn)操作)如圖①,在中,,現(xiàn)將邊沿的平分線翻折,點(diǎn)落在邊的點(diǎn)處;再將線段沿翻折到線段,連接.
(探究發(fā)現(xiàn))若點(diǎn),,三點(diǎn)共線,則的大小是______,的大小是________,此時(shí)三條線段,,之間的數(shù)量關(guān)系是________.
(應(yīng)用拓展)如圖②,將圖①中滿(mǎn)足(實(shí)驗(yàn)操作)與(探究發(fā)現(xiàn))的的邊延長(zhǎng)至,使得,連接,直接寫(xiě)出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD的一組對(duì)邊AD、BC的延長(zhǎng)線相交于點(diǎn)E.另一組對(duì)邊AB、DC的延長(zhǎng)線相交于點(diǎn)F,若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,則AD的長(zhǎng)為_____(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,,若點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿折線運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
備用圖
(1)___________;
(2)若點(diǎn)恰好在的角平分線上,求此時(shí)的值:
(3)在運(yùn)動(dòng)過(guò)程中,當(dāng)為何值時(shí),為等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com