【題目】在平面直角坐標(biāo)系中,直線(xiàn)分別與x軸,y軸交于點(diǎn),點(diǎn)C是第一象限內(nèi)的一點(diǎn),且,拋物線(xiàn)經(jīng)過(guò)兩點(diǎn),與x軸的另一交點(diǎn)為D

1)求此拋物線(xiàn)的解析式;

2)判斷直線(xiàn)的位置關(guān)系,并證明你的結(jié)論;

3)點(diǎn)Mx軸上一動(dòng)點(diǎn),在拋物線(xiàn)上是否存在一點(diǎn)N,使以四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1)二次函數(shù)的解析式為;(2AB∥CD,證明見(jiàn)解析;(3)點(diǎn)N的坐標(biāo)分別為(,1),(1),(,-1),(-1).

【解析】

1)求得點(diǎn)C的坐標(biāo),應(yīng)用待定系數(shù)法即可求得拋物線(xiàn)的解析式.

2)根據(jù)勾股定理求出AC,CDAD的長(zhǎng),從而根據(jù)勾股定理逆定理得到△ACD為直角三角形,∠ACD=90°,由∠BAC=90°,得出AB∥CD

3)由題意可知,要使得以A,B,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形,只需要點(diǎn)Nx軸的距離與點(diǎn)Bx軸的距離相等.據(jù)此列出方程求解即可.

解:(1)由題意可求點(diǎn)A(20),點(diǎn)B0,1).

過(guò)點(diǎn)CCE⊥x軸,易證△AOB≌△ECA

∴ OA=CE=2,OB=AE=1

點(diǎn)C的坐標(biāo)為(3,2).

將點(diǎn)A(2,0),點(diǎn)C(3,2)代入

,,解得

二次函數(shù)的解析式為

2AB∥CD.證明如下:

,解得

∴ D點(diǎn)坐標(biāo)為(7,0).

可求

∴△ACD為直角三角形,∠ACD=90°

∵∠BAC=90°,

∴ AB∥CD

3)如圖,由題意可知,要使得以A,B,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形,只需要點(diǎn)Nx軸的距離與點(diǎn)Bx軸的距離相等.

∵ B點(diǎn)坐標(biāo)為(0,1),

點(diǎn)Nx軸的距離等于1

可得

解這兩個(gè)方程得

點(diǎn)N的坐標(biāo)分別為(1),(,1),(-1),(-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,AB=AC,點(diǎn)MBA的延長(zhǎng)線(xiàn)上.

(1)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母.(保留作圖痕跡)

①作∠MAC的平分線(xiàn)AN;

②作AC的中點(diǎn)O,連結(jié)BO,并延長(zhǎng)BOAN于點(diǎn)D,連結(jié)CD;

(2)(1)的條件下,判斷四邊形ABCD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O與斜邊AC交于點(diǎn)D,E為BC邊的中點(diǎn),連接DE、OE.

(1)求證:DE是⊙O的切線(xiàn);

(2)填空:

①當(dāng)∠CAB= 時(shí),四邊形AOED是平行四邊形;

②連接OD,在①的條件下探索四邊形OBED的形狀為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DF、BD

1)求證:△AEB≌△CFD;

2)若四邊形EBFD是菱形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù),有下列結(jié)論:①其圖象與x軸一定相交;②若,函數(shù)在時(shí),yx的增大而減小;③無(wú)論a取何值,拋物線(xiàn)的頂點(diǎn)始終在同一條直線(xiàn)上;④無(wú)論a取何值,函數(shù)圖象都經(jīng)過(guò)同一個(gè)點(diǎn).其中所有正確的結(jié)論是___.(填寫(xiě)正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠BAC45°ADBC于點(diǎn)D,若BD3CD2.則ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,連接AC,BD交于點(diǎn)M.填空:

的值為   ;

②∠AMB的度數(shù)為   

(2)類(lèi)比探究

如圖2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,連接ACBD的延長(zhǎng)線(xiàn)于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說(shuō)明理由;

(3)拓展延伸

在(2)的條件下,將OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線(xiàn)交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫(xiě)出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為( 。

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)從A城出發(fā)勻速行駛至B城.在整個(gè)行駛過(guò)程中,甲、乙兩車(chē)離開(kāi)A城的距離y(千米)與甲車(chē)行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:①A,B兩城相距300千米;②乙車(chē)比甲車(chē)晚出發(fā)1小時(shí),卻早到1.5小時(shí);③乙車(chē)出發(fā)后2.5小時(shí)追上甲車(chē);④當(dāng)甲、乙兩車(chē)相距40千米時(shí),tt,其中正確的結(jié)論有( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案