【題目】如圖,ABC是等腰直角三角形,∠ACB90°,點(diǎn)A在反比例函數(shù)y=﹣的圖象上,點(diǎn)BC都在反比例函數(shù)y=﹣的圖象上,ABx軸,則點(diǎn)A的坐標(biāo)為(

A.(2)B.(,)C.(,)D.(2,)

【答案】B

【解析】

CDABD,設(shè)Bt,﹣),根據(jù)ABx軸,即可表示A2t,﹣),根據(jù)等腰直角三角形的性質(zhì)和反比例函數(shù)的性質(zhì)列方程求出t的值,即可得到點(diǎn)A的坐標(biāo).

解:作CDABD,如圖,

設(shè)Bt,﹣),

ABx軸,

A點(diǎn)的縱坐標(biāo)為﹣,

A2t,﹣),

∵△ABC是等腰直角三角形,CDAB,

ADBD,CDAB,CDy軸,

D點(diǎn)坐標(biāo)為(t,﹣),

C點(diǎn)的橫坐標(biāo)為t

∵點(diǎn)C在反比例函數(shù)y=﹣的圖象上,

Ct,﹣),

ABt2t=﹣tCD=﹣+,

∴﹣+×(﹣t),

解得t=﹣t(舍去),

A(﹣).

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點(diǎn)為E,該拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且BO=OC=3AO,直線y=﹣x+1與y軸交于點(diǎn)D.

(1)求拋物線的解析式;

(2)證明:△DBO∽△EBC;

(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PBC是等腰三角形?若存在,請(qǐng)直接寫出符合條件的P點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,一次函數(shù)y=-2x與二次函數(shù)y=ax2+2ax+c的圖像交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與其對(duì)稱軸交于點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo);

(2)設(shè)二次函數(shù)圖像的頂點(diǎn)為D,點(diǎn)C與點(diǎn)D關(guān)于 x軸對(duì)稱,且△ACD的面積等于2.

① 求二次函數(shù)的解析式;

② 在該二次函數(shù)圖像的對(duì)稱軸上求一點(diǎn)P(寫出其坐標(biāo)),使△PBC與△ACD相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市用5 000元購(gòu)進(jìn)一批新品種的蘋果進(jìn)行試銷,由于銷售狀況良好,超市又調(diào)撥11 000元資金購(gòu)進(jìn)該品種蘋果,但這次的進(jìn)貨價(jià)比試銷時(shí)每千克多了0.5元,購(gòu)進(jìn)蘋果數(shù)量是試銷時(shí)的2倍.

1)試銷時(shí)該品種蘋果的進(jìn)貨價(jià)是每千克多少元?

2)如果超市將該品種蘋果按每千克7元的定價(jià)出售,當(dāng)大部分蘋果售出后,余下的蘋果定價(jià)為4元,超市在這兩次蘋果銷售中的盈利不低于4 100元,那么余下的蘋果最多多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人沿相同的路線由地到地勻速前進(jìn),、兩地之間的路程為20千米,他們距地的距離(單位:千米)與乙出發(fā)后的時(shí)間(單位:小時(shí))的函數(shù)圖象如圖所示.根據(jù)圖象信息,回答下列問(wèn)題:

1)甲的速度是 千米/小時(shí),乙的速度是 千米/小時(shí);

2)是甲先出發(fā)還是乙先出發(fā)?先出發(fā)幾小時(shí)?

3)若乙到達(dá)地休息30分鐘之后,立即以原來(lái)的速度返回地,則在乙出發(fā)幾小時(shí)以后兩人再次相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC 中,AB = AC,以AB為直徑的⊙O 別交ACBC于點(diǎn) D,E,過(guò)點(diǎn)B作⊙O的切線, AC的延長(zhǎng)線于點(diǎn)F

(1) 求證:∠CBF =CAB;

(2) CD = 2,求FC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線軸交于兩點(diǎn),與軸交于點(diǎn),其對(duì)稱軸軸交于點(diǎn)

1)求拋物線的表達(dá)式;

2)如圖1,若動(dòng)點(diǎn)在對(duì)稱軸上,當(dāng)的周長(zhǎng)最小時(shí),求點(diǎn)的坐標(biāo);

3)如圖2,設(shè)點(diǎn)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)為是線段上的一個(gè)動(dòng)點(diǎn),若,求直線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)EAD的中點(diǎn),連接BE、CE,CEBD相交于點(diǎn)H,連接AH,交BE于點(diǎn)G,則GH的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:解方程x2|x|20解:(1)當(dāng)x≥0時(shí),原方程可以化為x2x20,

解得x12x2=﹣10(不合題意,舍去);(2)當(dāng)x0時(shí),原方程可以化為x2+x20,解得x1=﹣2,x210(舍去).∴原方程的解為x12,x2=﹣2.那么方程x2|x1|10的解為(

A.0,1B.=﹣21

C.1,=﹣2D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案