【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)翻折后,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長(zhǎng)是________ cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,DF⊥DE于點(diǎn)D,并交EC的延長(zhǎng)線于點(diǎn)F.下列結(jié)論:
①CE=CF;
②線段EF的最小值為;
③當(dāng)AD=2時(shí),EF與半圓相切;
④若點(diǎn)F恰好落在B C上,則AD=;
⑤當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過的面積是.
其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面為某年11月的日歷:
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
(1)在日歷上任意圈出一個(gè)豎列上相鄰的3個(gè)數(shù);
①設(shè)中間的一個(gè)數(shù)為,則另外的兩個(gè)數(shù)為 、 ;
②若已知這三個(gè)數(shù)的和為42,則這三天都在星期 ;
(2)在日歷上用一個(gè)小正方形任意圈出其中的9個(gè)數(shù),設(shè)圈出的9個(gè)數(shù)的中心的數(shù)為b,若這9個(gè)數(shù)的和為153,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線y=經(jīng)過Rt△BOC斜邊上的點(diǎn)A,且滿足,與BC交于點(diǎn)D,S△BOD=21,求:
(1)S△BOC
(2)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF的長(zhǎng)為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀下面材料:
點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù)a、b, A、B兩點(diǎn)之間的距離表示為AB,若a≥b,則 | a-b | = a-b;若a < b,則 | a-b | = b-a,當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí), 不妨設(shè)點(diǎn)A在原,
如圖甲, AB = OB =∣b∣=∣a b∣;當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
① 如圖乙,點(diǎn)A、B都在原點(diǎn)的右邊,AB=OBOA=|b||a|=ba =|ab |;
②如圖丙,點(diǎn)A、B都在原點(diǎn)的左邊, AB = OB OA =|b||a|= b (a) = |ab|;
③如圖丁,點(diǎn)A、B在原點(diǎn)的兩邊AB=OA+OB=|a|+|b|=a+(b) =|ab|.
綜上所述,數(shù)軸上A、B兩點(diǎn)之間的距離AB=∣ab∣.
(2)回答下列問題:
①數(shù)軸上表示1和3的兩點(diǎn)之間的距離是______,數(shù)軸上表示1和3的兩點(diǎn)之間的距離是______;
②數(shù)軸上表示x和1的兩點(diǎn)分別是點(diǎn)A和B,則A、B之間的距離表示為______,如果AB=2,那么x =________ ;
③當(dāng)代數(shù)式∣x +1∣+∣x 3∣取最小值時(shí),相應(yīng)的x的取值范圍是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).
(1)求此二次函數(shù)的表達(dá)式;
(2)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
【答案】(1)y=-x2-x+8(2)
【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點(diǎn)坐標(biāo),把B、C兩點(diǎn)坐標(biāo)代入二次函數(shù)的解析式就可解答;
(2)過點(diǎn)F作FG⊥AB,垂足為G,由EF∥AC,得△BEF∽△BAC,利用相似比求EF,利用sin∠FEG=sin∠CAB求FG,根據(jù)S=S△BCE-S△BFE,求S與m之間的函數(shù)關(guān)系式.
解:(1)解方程x2-10x+16=0得x1=2,x2=8
∴B(2,0)、C(0,8)
∴所求二次函數(shù)的表達(dá)式為y=-x2-x+8
(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,
∵OA=6,OC=8, ∴AC=10.
∵EF∥AC, ∴△BEF∽△BAC.
∴=. 即=. ∴EF=.
過點(diǎn)F作FG⊥AB,垂足為G,
則sin∠FEG=sin∠CAB=.∴=.
∴FG=·=8-m.
∴S=S△BCE-S△BFE
=
(0<m<8)
點(diǎn)睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),span>銳角三角函數(shù)的定義,割補(bǔ)法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
23
【題目】如圖(1),在平面直角坐標(biāo)系中,點(diǎn)A(0,﹣6),點(diǎn)B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角邊CD在y軸上,且點(diǎn)C與點(diǎn)A重合.Rt△CDE沿y軸正方向平行移動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到點(diǎn)O時(shí)停止運(yùn)動(dòng).解答下列問題:
(1)如圖(2),當(dāng)Rt△CDE運(yùn)動(dòng)到點(diǎn)D與點(diǎn)O重合時(shí),設(shè)CE交AB于點(diǎn)M,求∠BME的度數(shù).
(2)如圖(3),在Rt△CDE的運(yùn)動(dòng)過程中,當(dāng)CE經(jīng)過點(diǎn)B時(shí),求BC的長(zhǎng).
(3)在Rt△CDE的運(yùn)動(dòng)過程中,設(shè)AC=h,△OAB與△CDE的重疊部分的面積為S,請(qǐng)寫出S與h之間的函數(shù)關(guān)系式,并求出面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計(jì)劃在總費(fèi)用元的限額內(nèi),租用汽車送名學(xué)生和名教師集體參加校外實(shí)踐活動(dòng),為確保安全,每輛汽車上至少要有名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.
(1)根據(jù)題干所提供的信息,確定共需租用多少輛汽車?
(2)請(qǐng)你給學(xué)校選擇一種最節(jié)省費(fèi)用的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,∠BAD=60°,BD是對(duì)角線,點(diǎn)E、F分別是邊AB、AD上兩個(gè)點(diǎn),且滿足AE=DF,連接BF與DE相交于點(diǎn)G.
(1)如圖1,求∠BGD的度數(shù);
(2)如圖2,作CH⊥BG于H點(diǎn),求證:2GH=GB+DG;
(3)在滿足(2)的條件下,且點(diǎn)H在菱形內(nèi)部,若GB=6,CH=4,求菱形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com