【題目】如圖,若△ABC的三條內(nèi)角平分線相交于點(diǎn)I,過I作DE⊥AI分別交AB、AC于點(diǎn)D、E,則圖中與∠ICE一定相等的角(不包括它本身)有( )個.
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】解答:①根據(jù)角平分線的性質(zhì)易求∠1=∠2;
②∵△ABC的三條內(nèi)角平分線相交于點(diǎn)I,
∴∠BIC=180°(∠3+∠2)=180° (∠ABC+∠ACB)
=180° (180°∠BAC)=90°+∠BAC,
∵AI平分∠BAC,
∴∠DAI=∠DAE.
∵DE⊥AI于I,
∴∠AID=90°.
∴∠BDI=∠AID+∠DAI=90+∠BAC,
∴∠BIC=∠BDI.
∴180°(∠4+∠5)=180°(∠2+∠3).
又∵∠3=∠4,
∴∠2=∠5,
∴∠5=∠1,
綜上所述,圖中與∠ICE一定相等的角(不包括它本身)有2個。
故選:B.
點(diǎn)睛:本題主要考查了三角形的內(nèi)心的性質(zhì),三角形內(nèi)角和定理、外角的性質(zhì),角平分線的性質(zhì)以及垂線的性質(zhì),比較簡單.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD的邊AB延長到點(diǎn)E,使BE=AB,連接DE,交邊BC于點(diǎn)F.
(1)求證:△BEF≌△CDF.
(2)連接BD,CE,若∠BFD=2∠A,求證四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果水位升高3 m時(shí),水位變化記做+3 m,那么水位下降4 m時(shí),水位變化記做( )
A. -3 m B. -4 m C. 4 m D. 7 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為6cm的⊙O中,點(diǎn)A是劣弧的中點(diǎn),點(diǎn)D是優(yōu)弧上一點(diǎn),且∠D=30°,下列四個結(jié)論:
①OA⊥BC;②BC=6cm;③sin∠AOB=;④四邊形ABOC是菱形.
其中正確結(jié)論的序號是( )
A. ①③ B. ①②③④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合里.
﹣3.1415926,0, ,π,﹣, ,﹣,﹣1.414, ,﹣0.2121121112…(每相鄰兩個2之間依次多一個1)
有理數(shù)集合:{ …};
無理數(shù)集合:{ …};
負(fù)實(shí)數(shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠B+∠BCD=180°,∠B=∠D.
求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°( 已知 ),
∴AB∥CD ( )
∴∠B=_______( )
又∵∠B=∠D(已知 ),
∴∠D=_______( )
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com