【題目】已知二次函數(shù)y=﹣x2+4x.

(1)寫出二次函數(shù)y=﹣x2+4x圖象的對稱軸;

(2)在給定的平面直角坐標系中,畫出這個函數(shù)的圖象(列表、描點、連線);

(3)根據(jù)圖象,寫出當y0時,x的取值范圍.

【答案】(1)對稱軸是過點(2,4)且平行于y軸的直線x=2;(2)見解析;(3)x0x4.

【解析】試題分析:(1)把一般式化成頂點式即可求得;

(2)首先列表求出圖象上點的坐標,進而描點連線畫出圖象即可.

(3)根據(jù)圖象從而得出y<0時,x的取值范圍.

試題解析:(1)∵y=-x2+4x=-(x-2)2+4,

∴對稱軸是過點(2,4)且平行于y軸的直線x=2;

(2)列表得:

x

-1

0

1

2

3

4

5

y

-5

0

3

4

3

0

-5

描點,連線.

(3)由圖象可知,

y<0時,x的取值范圍是x<0x>4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,是對角線上一點,過點作矩形,其中點上,點上.

的度數(shù);

試說明,;

若正方形的面積為,求矩形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在一次打籃球時,籃球傳出后的運動路線為如圖所示的拋物線以小明所站立的位置為原點O建立平面直角坐標系,籃球出手時在O點正上方1m處的點P.已知籃球運動時的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式y=-x2+x+c.

1求y與x之間的函數(shù)表達式;

2球在運動的過程中離地面的最大高度;

3小亮手舉過頭頂,跳起后的最大高度為BC=2.5m,若小亮要在籃球下落過程中接到球求小亮離小明的最短距離OB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(-1,0),B(1,0),Cy軸正半軸上一點,點D為第三象限一動點,CDABF,且∠ADB=2BAC

(1)求證:∠ADB與∠ACB互補;

(2)求證:CD平分∠ADB;

(3)若在D點運動的過程中,始終有DC=DA+DB,在此過程中,∠BAC的度數(shù)是否變化?如果變化,請說明理由;如果不變,請求出∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,2)與(0,3)之間(不包括這兩點),對稱軸為直線x=2.下列結(jié)論:abc<0;9a+3b+c>0;③若點M(,y1),點N(,y2)是函數(shù)圖象上的兩點,則y1<y2<a<﹣其中正確結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某同學把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的方程

是方程的一個根,求的值和方程的另一根;

為何實數(shù)時,方程有實數(shù)根;

,是方程的兩個根,且,試求實數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC中,DAB的中點,DCAC,且∠BCD=30°,求∠CDA的正弦值、余弦值和正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A,C分別在x軸,y軸上,頂點B在第一象限,AB=1.將線段OA繞點O按逆時針方向旋轉(zhuǎn)60°得到線段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過P,B兩點,則k的值為______________.

查看答案和解析>>

同步練習冊答案