【題目】如圖,⊙O的直徑AD長為6,AB是弦,∠A=30°,CD∥AB,且CD=
(1)求∠C的度數(shù);
(2)求證:BC是⊙O的切線;
(3)求陰影部分面積.

【答案】
(1)解:如圖,

連接BD,

∵AD為圓O的直徑,

∴∠ABD=90°,

∴BD= AD=3,

∵CD∥AB,∠ABD=90°,

∴∠CDB=∠ABD=90°,

在Rt△CDB中,tanC= = =

∴∠C=60°;


(2)證明:連接OB,

∵OA=OB,

∴∠OBA=∠A=30°,

∵CD∥AB,∠C=60°,

∴∠ABC=180°﹣∠C=120°,

∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,

∴OB⊥BC,

∴BC為圓O的切線;


(3)解:過點O作OE⊥AB,則有OE= OA= ,

∵AB= = =3 ,

∴SOAB= ABOE= ×3 × =

∵∠AOB=180°﹣2∠A=120°,

∴S扇形OAB= =3π,

則S陰影=S扇形OAB﹣SAOB=3π﹣


【解析】(1)連接BD,由AD為圓的直徑,得到∠ABD為直角,再利用30度角所對的直角邊等于斜邊的一半求出BD的長,根據(jù)CD與AB平行,得到一對內(nèi)錯角相等,確定出∠CDB為直角,在直角三角形BCD中,利用銳角三角函數(shù)定義求出tanC的值,即可確定出∠C的度數(shù);(2)連接OB,由OA=OB,利用等邊對等角得到一對角相等,再由CD與AB平行,得到一對同旁內(nèi)角互補,求出∠ABC度數(shù),由∠ABC﹣∠ABO度數(shù)確定出∠OBC度數(shù)為90,即可得證;(3)過O作OE⊥AB,利用30度角所對的直角邊等于斜邊的一半求出OE的長,根據(jù)勾股定理求出AE的長,進而求出AB的長,確定出三角形OAB面積,再由扇形AOB面積減去三角形AOB面積求出陰影部分面積即可.
【考點精析】解答此題的關(guān)鍵在于理解切線的判定定理的相關(guān)知識,掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線,以及對扇形面積計算公式的理解,了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料: “共享單車”是指企業(yè)與政府合作,在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車共享的一種服務(wù),是共享經(jīng)濟的一種新形態(tài).共享單車的出現(xiàn)讓更多的用戶有了更好的代步選擇.自行車也代替了一部分公共交通甚至打車的出行.
Quest Mobile監(jiān)測的M型與O型單車從2016年10月﹣﹣2017年1月的月度用戶使用情況如表所示:

根據(jù)以上材料解答下列問題:
(1)仔細閱讀上表,將O型單車總用戶數(shù)用折線圖表示出來,并在圖中標明相應(yīng)數(shù)據(jù);
(2)根據(jù)圖表所提提供的數(shù)據(jù),選擇你所感興趣的方面,寫出一條你發(fā)現(xiàn)的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,

(1)如果點在底邊上且以的速度由點向點運動,同時點在腰上由點運動.

①如果點與點的運動速度相等,求經(jīng)過多少秒后;

②如果點與點的運動速度不相等,當(dāng)點的運動速度為多少時,能夠使全等?

(2)若點以②中的運動速度從點出發(fā),點速度從點同時出發(fā),都逆時針沿三邊運動,直接寫出當(dāng)點與點第一次相遇時的運動的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,AOC=50°.

(1)求出∠AOB及其補角的度數(shù);

(2)請求出∠DOC和∠AOE的度數(shù),并判斷∠DOE與∠AOB是否互補,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1為放置在水平桌面上的某創(chuàng)意可折疊臺燈的平面示意圖,將其抽象成圖2,量的∠DCB=60°,∠CDE=150°,燈桿CD的長為40cm,燈管DE的長為26cm,底座AB的厚度為2cm,不考慮其他因素,分別求出DE與水平卓,面(AB所在的直線)所成的夾角度數(shù)和臺燈的高(點E到桌面的距離).(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是AB上一動點(不與點A,B重合),點F在AD上,過點E作EG⊥EF交BC于點G,連接FG.

(1)當(dāng)BE=AF時,求證:EF=EG
(2)若AB=4,AF=1,且設(shè)AE=n,
①當(dāng)FG∥AB時,求n的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB的角平分線與∠ABC的外角平分線相交于點P,且∠D+C=200°,則∠P=( )

A. 10 ° B .20 ° C .30° D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點,與y軸交于點C,過點B作BM⊥x軸,垂足為M,BM=OM,OB=2 ,點A的縱坐標為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接MC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

同步練習(xí)冊答案