【題目】如圖1為放置在水平桌面上的某創(chuàng)意可折疊臺燈的平面示意圖,將其抽象成圖2,量的∠DCB=60°,∠CDE=150°,燈桿CD的長為40cm,燈管DE的長為26cm,底座AB的厚度為2cm,不考慮其他因素,分別求出DE與水平卓,面(AB所在的直線)所成的夾角度數(shù)和臺燈的高(點(diǎn)E到桌面的距離).(結(jié)果保留根號)
【答案】解:如圖,過點(diǎn)D作AB的平行線DM,
∵∠DCB=60°,
∴∠CDM=180°﹣∠DCB=120°,
∵∠CDE=150°,
∴∠EDM=∠CDE﹣∠CDM=150°﹣120°=30°,
即DE與水平桌面(AB所在的直線)所成的夾角度數(shù)為30°;
作EF⊥DM于點(diǎn)F,DG⊥AB于點(diǎn)G.
∵在直角△DEF中,∠EFD=90°,∠EDF=30°,DE=26cm,
∴EF= DE=13cm,
∵在直角△CDG中,∠DGC=90°,∠DCG=60°,CD=40cm,
∴sin60°= ,
∴DG=CDsin60°=40× =20 cm,
∵底座AB的厚度為2cm,
∴點(diǎn)E到桌面的距離是:13+20 +2=(15+20 )cm.
答:臺燈的高(點(diǎn)E到桌面的距離)為(15+20 )cm
【解析】首先過點(diǎn)D作AB的平行線DM,根據(jù)平行線的性質(zhì)求出∠CDM=120°,得出∠EDM的度數(shù),即為DE與水平桌面(AB所在的直線)所成的夾角度數(shù);再 作EF⊥DM于點(diǎn)F,DG⊥AB于點(diǎn)G,然后解直角三角形求出EF、DG的長,進(jìn)而得出臺燈的高.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y= 相交于點(diǎn)A(m,3),B(﹣6,n),與x軸交于點(diǎn)C.
(1)求直線y=kx+b(k≠0)的解析式;
(2)若點(diǎn)P在x軸上,且S△ACP= S△BOC , 求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2開始,連續(xù)的偶數(shù)相加,它們和的情況如表:
加數(shù)的個(gè)數(shù)n | S |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=15=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
(1)根據(jù)表中的規(guī)律猜想:用n的式子表示S的公式為:S=2+4+6+8+…+2n=;
(2)如下數(shù)表是由從1開始的連續(xù)自然數(shù)組成,觀察規(guī)律:
①第n行的第一個(gè)數(shù)可用含n的式子表示為;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,DC∥AB,BD平分∠ABC,CD=4.
(1)求BC的長;
(2)如圖2,若∠ABC=60°,過點(diǎn)D作DE⊥AB,過點(diǎn)C作CF⊥BD,垂足分別為E、F,連接EF.請判斷△DEF的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張對邊互相平行的紙條,折成如圖所示,EF是折痕,若∠EFB=32°,則下列結(jié)論正確的有( )
(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AD長為6,AB是弦,∠A=30°,CD∥AB,且CD= .
(1)求∠C的度數(shù);
(2)求證:BC是⊙O的切線;
(3)求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠C=70°,△AB′C′與△ABC 關(guān)于直線 EF對稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是( )
A. 30° B. 35° C. 40° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索與發(fā)現(xiàn):
(1)若直線a1⊥a2,a2∥a3,則直線a1與a3的位置關(guān)系是__________,請說明理由.
(2)若直線a1⊥a2,a2∥a3,a3⊥a4,則直線a1與a4的位置關(guān)系是________.(直接填結(jié)論,不需要證明)
(3)現(xiàn)在有2 011條直線a1,a2,a3,…,a2 011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,請你探索直線a1與a2 011的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小龍?jiān)趯W(xué)校組織的社會調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的家庭收入情況. 他從中隨機(jī)調(diào)查了40戶居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.
分組 | 頻數(shù) | 百分比 |
600≤<800 | 2 | 5% |
800≤<1000 | 6 | 15% |
1000≤<1200 | 45% | |
9 | 22.5% | |
1600≤<1800 | 2 | |
合計(jì) | 40 | 100% |
根據(jù)以上提供的信息,解答下列問題:
(1)補(bǔ)全頻數(shù)分布表.
(2)補(bǔ)全頻數(shù)分布直方圖.
(3)繪制相應(yīng)的頻數(shù)分布折線圖.
(4)請你估計(jì)該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com