【題目】現(xiàn)有一項(xiàng)資助貧困生的公益活動(dòng)由你來主持,每位參與者需交贊助費(fèi)5元,活動(dòng)規(guī)則如下:如圖是兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,每個(gè)轉(zhuǎn)盤被分成6個(gè)相等的扇形,參與者轉(zhuǎn)動(dòng)這兩個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針各自指向一個(gè)數(shù)字,(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一數(shù)字為止),若指針最后所指的數(shù)字之和為12,則獲得一等獎(jiǎng),獎(jiǎng)金20元;數(shù)字之和為9,則獲得二等獎(jiǎng),獎(jiǎng)金10元;數(shù)字之和為7,則獲得三等獎(jiǎng),獎(jiǎng)金為5元;其余均不得獎(jiǎng);此次活動(dòng)所集到的贊助費(fèi)除支付獲獎(jiǎng)人員的獎(jiǎng)金外,其余全部用于資助貧困生的學(xué)習(xí)和生活;

(1)分別求出此次活動(dòng)中獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的概率;

(2)若此次活動(dòng)有2000人參加,活動(dòng)結(jié)束后至少有多少贊助費(fèi)用于資助貧困生?

【答案】(1)P(一等獎(jiǎng))=;P(二等獎(jiǎng))=,P(三等獎(jiǎng))=;(2)5000元贊助費(fèi)用于資助貧困生.

【解析】分析(1)此題需要兩步完成,所以采用樹狀圖法或者采用列表法都比較簡(jiǎn)單;解題時(shí)要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn),此題屬于不放回實(shí)驗(yàn).列舉出符合題意的各種情況的個(gè)數(shù),再根據(jù)概率公式解答即可.
(2)總費(fèi)用減去獎(jiǎng)金即為所求的金額.

詳解:列表得:

1

2

3

4

5

6

1

2

3

4

5

6

7

2

3

4

5

6

7

8

3

4

5

6

7

8

9

4

5

6

7

8

9

10

5

6

7

8

9

10

11

6

7

8

9

10

11

12

∴一共有36種情況,此次活動(dòng)中獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的分別有1,4,6種情況,

∴(1)P(一等獎(jiǎng))=;P(二等獎(jiǎng))=,P(三等獎(jiǎng))=;

(2)(×20+×10+×5)×2000=5000,

5×2000﹣5000=5000,

∴活動(dòng)結(jié)束后至少有5000元贊助費(fèi)用于資助貧困生.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:O是直線AB上一點(diǎn),∠AOC50°,OD是∠BOC的角平分線,OEOC于點(diǎn)O.求∠DOE的度數(shù).(請(qǐng)補(bǔ)全下面的解題過程)

解:∵O是直線AB上一點(diǎn),∠AOC50°,

∴∠BOC180°-∠AOC °.

OD是∠BOC的角平分線,

∴∠COD BOC .( )

∴∠COD65°.

OEOC于點(diǎn)O,(已知).

∴∠COE °.( )

∴∠DOE=∠COE-∠COD ° .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AD∥BC,∠A=∠C,點(diǎn)P在邊AB上.

(1)求證:四邊形ABCD是平行四邊形;

(2)若AB=AD,以過點(diǎn)P的直線為軸,將四邊形ABCD折疊,使點(diǎn)B、C分別落在點(diǎn)B′、C′上,且B′C′經(jīng)過點(diǎn)D,折痕與四邊形的另一交點(diǎn)為Q.在圖2中作出四邊形PB′C′Q(保留作圖痕跡,不必說明作法和理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過點(diǎn)A6,0)的直線ykx3與直線y=﹣x交于點(diǎn)B,點(diǎn)P從點(diǎn)O出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A勻速運(yùn)動(dòng).

1)求點(diǎn)B的坐標(biāo);

2)當(dāng)△OPB是直角三角形時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間;

3)當(dāng)BP平分△OAB的面積時(shí),直線BPy軸交于點(diǎn)D,求線段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某縣為創(chuàng)建省文明衛(wèi)生城市,計(jì)劃將城市道路兩旁的人行道進(jìn)行改造,經(jīng)調(diào)查可知,若該工程由甲工程隊(duì)單獨(dú)來做恰好在規(guī)定時(shí)間內(nèi)完成;若該工程由乙工程隊(duì)單獨(dú)完成,則需要的天數(shù)是規(guī)定時(shí)間的2倍,若甲、乙兩工程隊(duì)合作6天后,余下的工程由甲工程隊(duì)單獨(dú)來做還需3天完成.

(1)問該縣要求完成這項(xiàng)工程規(guī)定的時(shí)間是多少天?

(2)已知甲工程隊(duì)做一天需付給工資5萬元,乙工程隊(duì)做一天需付給工資3萬元.現(xiàn)該工程由甲、乙兩個(gè)工程隊(duì)合作完成,該縣準(zhǔn)備了工程工資款65萬元.請(qǐng)問該縣準(zhǔn)備的工程工資款是否夠用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.

(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC=   ;

(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長(zhǎng);

(3)如圖3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之間距離是否有最大值?如有求出最大值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點(diǎn).

(1)若∠BAC=60°,∠C=70°,求∠AFB的大;

(2)若D是BC的中點(diǎn),∠ABE=30°,求證:△ABC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在國(guó)慶節(jié)社會(huì)實(shí)踐活動(dòng)中,鹽城某校甲、乙、丙三位同學(xué)一起調(diào)查了高峰時(shí)段鹽靖高速、鹽洛高速和沈海高速的車流量(每小時(shí)通過觀測(cè)點(diǎn)的汽車車輛數(shù)),三位同學(xué)匯報(bào)高峰時(shí)段的車流量情況如下:

甲同學(xué)說:鹽靖高速車流量為每小時(shí)2000輛.

乙同學(xué)說:沈海高速的車流量比鹽洛高速的車流量每小時(shí)多400輛.

丙同學(xué)說:鹽洛高速車流量的5倍與沈海高速車流量的差是鹽靖高速車流量的2倍.

請(qǐng)你根據(jù)他們所提供的信息,求出高峰時(shí)段鹽洛高速和沈海高速的車流量分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù)按一定規(guī)律排列如下表:

平移一個(gè)陰影方框(如表所示),被這個(gè)陰影方框覆蓋住的三個(gè)數(shù)的和可以是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案