【題目】如圖:O是直線AB上一點(diǎn),∠AOC=50°,OD是∠BOC的角平分線,OE⊥OC于點(diǎn)O.求∠DOE的度數(shù).(請補(bǔ)全下面的解題過程)
解:∵O是直線AB上一點(diǎn),∠AOC=50°,
∴∠BOC=180°-∠AOC= °.
∵ OD是∠BOC的角平分線,
∴∠COD= ∠BOC .( )
∴∠COD=65°.
∵OE⊥OC于點(diǎn)O,(已知).
∴∠COE= °.( )
∴∠DOE=∠COE-∠COD= ° .
【答案】130,,角平分線的定義,90,垂直的定義,25
【解析】
先求出∠BOC的度數(shù),再根據(jù)OD是∠BOC的角平分線得出∠COD的度數(shù),然后根據(jù)OE⊥OC,得出∠COE,最后根據(jù)∠DOE=∠COE-∠COD得出答案.
解:解:∵O是直線AB上一點(diǎn),∠AOC=50°,
∴∠BOC=180°-∠AOC= 130 °.
∵ OD是∠BOC的角平分線,
∴∠COD= ∠BOC .( 角平分線的定義)
∴∠COD=65°.
∵OE⊥OC于點(diǎn)O,(已知).
∴∠COE= 90 °.( 垂直的定義)
∴∠DOE=∠COE-∠COD= 25 ° .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上有三點(diǎn) A,B,C ,若用 AB 表示 A,B 兩點(diǎn)的距離,AC 表示 A ,C 兩點(diǎn)的 距離,且 BC 2 AB ,點(diǎn) A 、點(diǎn)C 對應(yīng)的數(shù)分別是a 、c ,且| a 20 | | c 10 | 0 .
(1)若點(diǎn) P,Q 分別從 A,C 兩點(diǎn)同時出發(fā)向右運(yùn)動,速度分別為 2 個單位長度/秒、5個單位長度/ 秒,則運(yùn)動了多少秒時,Q 到 B 的距離與 P 到 B 的距離相等?
(2)若點(diǎn) P ,Q 仍然以(1)中的速度分別從 A ,C 兩點(diǎn)同時出發(fā)向右運(yùn)動,2 秒后,動點(diǎn) R 從 A點(diǎn)出發(fā)向左運(yùn)動,點(diǎn) R 的速度為1個單位長度/秒,點(diǎn) M 為線段 PR 的中點(diǎn),點(diǎn) N為線段 RQ的中點(diǎn),點(diǎn)R運(yùn)動了x 秒時恰好滿足 MN AQ 25,請直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用方程解答下列問題
(1)一件工作,甲單獨(dú)做20小時完成,乙單獨(dú)做12小時完成,現(xiàn)在先由甲單獨(dú)做4小時,余下的由甲乙一起完成余下的部分需要幾小時完成?
(2)王強(qiáng)參加了一場3000米的賽跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分鐘,王強(qiáng)以6米秒的速度跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖各圖是棱長為1cm的小正方體擺成的,如圖①中,從正面看有1個正方形,表面積為6cm2;如圖②中,從正面看有3個正方形,表面積為18cm2;如圖③,從正面看有6個正方形,表面積為36cm2;…
(1)第6個圖中,從正面看有多少個正方形?表面積是多少?
(2)第n個圖形中,從正面看有多少個正方形?表面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E,G分別在邊DA,DC上(不與端點(diǎn)重合),且DE=DG,過D點(diǎn)作DF⊥CE,垂足為F.
(1)①∠BCE與∠CDF的大小關(guān)系是_______________;
②證明:GF⊥BF;
(2)探究G落在邊DC的什么位置時,BF=BC,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的周長是,底邊是腰長的函數(shù)。
(1)寫出這個函數(shù)的關(guān)系式;
(2)求出自變量的取值范圍;
(3)當(dāng)為等邊三角形時,求的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是昌平區(qū)2019年1月份每天的最低和最高氣溫,觀察此圖,下列說法正確的是( )
A.在1月份中,最高氣溫為10℃,最低氣溫為-2℃
B.在10號至16號的氣溫中,每天溫差最小為7℃
C.每天的最高氣溫均高于0℃,最低氣溫均低于0℃
D.每天的最高氣溫與最低氣溫都是具有相反意義的量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
問題背景
折紙是一種許多人熟悉的活動,將折紙的一邊二等分、四等分都是比較容易做到的,但將一邊三等分就不是那么容易了,近些年,經(jīng)過人們的不懈努力,已經(jīng)找到了多種將正方形折紙一邊三等分的精確折法,最著名的是由日本學(xué)者芳賀和夫發(fā)現(xiàn)的三種折法,現(xiàn)在被數(shù)學(xué)界稱之為芳賀折紙三定理.其中,芳賀折紙第一定理的操作過程及內(nèi)容如下(如圖1):
操作1:將正方形ABCD對折,使點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合.再將正方形ABCD展開,得到折痕EF;
操作2:再將正方形紙片的右下角向上翻折,使點(diǎn)C與點(diǎn)E重合,邊BC翻折至B'E的位置,得到折痕MN,B'E與AB交于點(diǎn)P.則P即為AB的三等分點(diǎn),即AP:PB=2:1.
解決問題
(1)在圖1中,若EF與MN交于點(diǎn)Q,連接CQ.求證:四邊形EQCM是菱形;
(2)請在圖1中證明AP:PB=2:l.
發(fā)現(xiàn)感悟
若E為正方形紙片ABCD的邊AD上的任意一點(diǎn),重復(fù)“問題背景”中操作2的折紙過程,請你思考并解決如下問題:
(3)如圖2.若 =2.則= ;
(4)如圖3,若=3,則= ;
(5)根據(jù)問題(2),(3),(4)給你的啟示,你能發(fā)現(xiàn)一個更加一般化的結(jié)論嗎?請把你的結(jié)論寫出來,不要求證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一項資助貧困生的公益活動由你來主持,每位參與者需交贊助費(fèi)5元,活動規(guī)則如下:如圖是兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,每個轉(zhuǎn)盤被分成6個相等的扇形,參與者轉(zhuǎn)動這兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針各自指向一個數(shù)字,(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一數(shù)字為止),若指針最后所指的數(shù)字之和為12,則獲得一等獎,獎金20元;數(shù)字之和為9,則獲得二等獎,獎金10元;數(shù)字之和為7,則獲得三等獎,獎金為5元;其余均不得獎;此次活動所集到的贊助費(fèi)除支付獲獎人員的獎金外,其余全部用于資助貧困生的學(xué)習(xí)和生活;
(1)分別求出此次活動中獲得一等獎、二等獎、三等獎的概率;
(2)若此次活動有2000人參加,活動結(jié)束后至少有多少贊助費(fèi)用于資助貧困生?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com