【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)C.已知實(shí)數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.
(1)求直線AB和OB的解析式.
(2)求拋物線的解析式.
(3)若點(diǎn)P為線段OB上的一個(gè)動點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)D在y軸右側(cè)),連接OD、BD.問△BOD的面積是否存在最大值?若存在,求出這個(gè)最大值并寫出此時(shí)點(diǎn)D的坐標(biāo);若不存在說明理由.
【答案】(1)y= ,y=-x;(2) ;(3)△BOD的面積有最大值,最大值為 ,D( ).
【解析】試題分析:(1)首先解方程得出A,B兩點(diǎn)的坐標(biāo),利用待定系數(shù)法確定直線AB和直線OB的解析式即可;
(2)利用待定系數(shù)法求出二次函數(shù)解析式即可;
(3)利用S△BOD=S△ODQ+S△BDQ得出關(guān)于x的二次函數(shù),進(jìn)而得出最值即可.
解:(1)解方程x2-2x-3=0,
得 x1=3,x2=-1.
∵m<n,
∴m=-1,n=3,
∴A(-1,-1),B(3,-3).
設(shè)直線AB的解析式為y=kx+b
∴,
解得:.
∴直線AB的解析式為y=-x+;
設(shè)直線OB的解析式為y=kx,
∴3k=-3,
解得:k=-1,
∴直線OB的解析式為y=-x;
(2)∵拋物線過原點(diǎn),設(shè)拋物線的解析式為y=ax2+bx(a≠0).
∴,
解得:,
∴拋物線的解析式為y=-x2+x.
(3)△BOD的面積是存在最大值;
過點(diǎn)D作DG⊥x軸,垂足為G,交OB于Q,過B作BH⊥x軸,垂足為H.
設(shè)Q(x,-x),D(x,-x2+x).
S△BOD=S△ODQ+S△BDQ=12DQOG+12DQGH,
=DQ(OG+GH),
= [x+(-x2+x)]×3,
=-(x-)2+,
∵0<x<3,
∴當(dāng)x=時(shí),S取得最x大值為,此時(shí)D(,-).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖是某種窗戶的形狀,其上部是半圓形,下部是邊長相同的四個(gè)小正方形,已知下部的小正方形的邊長為am,計(jì)算:
(1)窗戶的面積;
(2)窗框的總長;
(3)若a=1,窗戶上安裝的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不計(jì),求制作這種窗戶需要的費(fèi)用是多少元(π取3.14,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了進(jìn)一步改善環(huán)境,鄭州市今年增加了綠色自行車的數(shù)量,已知A型號的自行車比B型號的自行車的單價(jià)低30元,買8輛A型號的自行車與買7輛B型號的自行車所花費(fèi)用相同.
(1)A,B兩種型號的自行車的單價(jià)分別是多少?
(2)若購買A,B兩種自行車共600輛,且A型號自行車的數(shù)量不多于B型號自行車的一半,請你給出一種最省錢的方案,并求出該方案所需要的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用分式方程解決問題:元旦假期有兩個(gè)小組去攀登- -座高h米的山,第二組的攀登速度是第- -組的a倍.
(1)若,兩小組同時(shí)開始攀登,結(jié)果第二組比第一組早到達(dá)頂峰.求兩個(gè)小組的攀登速度.
(2)若第二組比第一組晚出發(fā),結(jié)果兩組同時(shí)到達(dá)頂峰,求第二組的攀登速度比第一組快多少? (用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陽泉市郊區(qū)教科局提出開展“三有課堂”,某中學(xué)在一節(jié)體現(xiàn)“三有課堂”公開展示課上,李老師展示一幅圖,條件是:C為直線AB上一點(diǎn),∠DCE為直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各個(gè)小組經(jīng)過討論后得到以下結(jié)論:①∠ACF與∠BCH互余 ②∠FCG與∠HCG互補(bǔ) ③∠ECF與∠GCH互補(bǔ) ④∠ACD﹣∠BCE=90°,聰明的你認(rèn)為哪些組的結(jié)論是正確的,正確的有( 。﹤(gè).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郊區(qū)某中學(xué)學(xué)霸父母只要有時(shí)間就陪孩子一起完成家庭作業(yè),在某天晚上,勤芬準(zhǔn)備完成作業(yè)時(shí):化簡(x2+7x+6)﹣(7x+8x2﹣4).發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)她把“”猜成3,請你化簡:(3x2+7x+6)﹣(7x+8x2﹣4);
(2)爸爸說:“你猜錯了,我看了標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”請你通過計(jì)算說明來幫助勤芬得到原題中“”是幾.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)的圖象上一點(diǎn),直線與反比例函數(shù)的圖象在第四象限的交點(diǎn)為點(diǎn)B.
(1)求直線AB的解析式;
(2)動點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動,當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上有A、B、C三點(diǎn),分別表示有理數(shù)﹣26,﹣10,10,動點(diǎn)P從A出發(fā),以每秒1個(gè)單位的速度向右移動,當(dāng)P點(diǎn)運(yùn)動到C點(diǎn)時(shí)運(yùn)動停止,設(shè)點(diǎn)P移動時(shí)間為t秒。
(1)用含t的代數(shù)式表示P到點(diǎn)A和點(diǎn)C的距離:PA=_____,PC=_____.
(2)當(dāng)點(diǎn)P運(yùn)動到B點(diǎn)時(shí),點(diǎn)Q從A出發(fā),以每秒3個(gè)單位的速度向右運(yùn)動,求t等于多少秒時(shí)P、Q兩點(diǎn)相遇?t等于多少秒時(shí)P、Q兩點(diǎn)相距4個(gè)單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)興趣小組活動中,小明進(jìn)行數(shù)學(xué)探究活動.將邊長為2的正方形ABCD與邊長為3的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.
(1)小明發(fā)現(xiàn)DG=BE且DG⊥BE,請你給出證明.
(2)如圖2,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請你幫他求出此時(shí)△ADG的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com