【題目】為了進一步改善環(huán)境,鄭州市今年增加了綠色自行車的數(shù)量,已知A型號的自行車比B型號的自行車的單價低30元,買8輛A型號的自行車與買7輛B型號的自行車所花費用相同.
(1)A,B兩種型號的自行車的單價分別是多少?
(2)若購買A,B兩種自行車共600輛,且A型號自行車的數(shù)量不多于B型號自行車的一半,請你給出一種最省錢的方案,并求出該方案所需要的費用.
【答案】(1)A型自行車的單價為210元,B型自行車的單價為240元.(2) 最省錢的方案是購買A型自行車200輛,B型自行車的400輛,總費用為138000元.
【解析】分析:(1)設(shè)A型自行車的單價為x元,B型自行車的單價為y元,構(gòu)建方程組即可解決問題.
(2)設(shè)購買A型自行車a輛,B型自行車的(600-a)輛.總費用為w元.構(gòu)建一次函數(shù),利用一次函數(shù)的性質(zhì)即可解決問題.
詳解:(1)設(shè)A型自行車的單價為x元,B型自行車的單價為y元,
由題意,
解得,
型自行車的單價為210元,B型自行車的單價為240元.
(2)設(shè)購買A型自行車a輛,B型自行車的輛.總費用為w元.
由題意,
,
隨a的增大而減小,
,
,
∴當時,w有最小值,最小值,
∴最省錢的方案是購買A型自行車200輛,B型自行車的400輛,總費用為138000元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,給出了甲、乙兩個品牌的純凈水近年來的銷售量變化情況,哪種品牌的純凈水銷售量增長較快?這與圖象給你的感覺一樣嗎?為什么圖象會給人這樣的感覺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為美化環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米.
(1)用含a的式子表示花圃的面積;
(2)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李明準備進行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.
(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認為這兩個正方形的面積之和不可能等于48 cm2,你認為他的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某玩具店將進貨價為元的玩具以元的銷售價售出,平均每月能售出個市場調(diào)研表明:當銷售價每漲價元時,其銷售量將減少2個.
(1)設(shè)每個玩具的銷售價上漲元,試用含的式子填空:
①漲價后,每個玩具的銷售價為 元;
②漲價后,每個玩具的利潤為 元;
③漲價后,玩具的月銷售量為 個.
(2)玩具店老板要想讓該玩具的銷售利潤平均每月達到1600元,銷售員甲說:“在原售價每個90元的基礎(chǔ)上再上漲30元,可以完成任務(wù)”銷售員乙說:“不用漲那么多,在原售價每個90元的基礎(chǔ)上再上漲10元就可以了”判斷銷售員甲與銷售員乙的說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】乒乓球是我國的國球,也是世界上流行的球類體育項目.我國乒乓球名將與其對應(yīng)身高如下表所示:
乒乓球名將 | 劉詩雯 | 鄧亞萍 | 白楊 | 丁寧 | 陳夢 | 孫穎莎 | 姚彥 |
身高() | 160 | 155 | 171 | 173 | 163 | 160 | 175 |
這些乒乓球名將身高的中位數(shù)和眾數(shù)是( )
A.160,163B.173,175C.163,160D.172,160
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=(k常數(shù),k≠1).
(1)若點A(2,1)在這個函數(shù)的圖象上,求k的值;
(2)若k=9,試判斷點B(﹣,﹣16)是否在這個函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,點A的坐標為(m,m),點B的坐標為(n,﹣n),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.
(1)求直線AB和OB的解析式.
(2)求拋物線的解析式.
(3)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD、BD.問△BOD的面積是否存在最大值?若存在,求出這個最大值并寫出此時點D的坐標;若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關(guān)于 x 的一元二次方程axbxc=0(a0,c0,a、b、c為常數(shù))有兩個不相等的實數(shù)根,(0),O為坐標原點,A、B為x軸正半軸上的兩點且A,0,B,0.
(1)當=c=2,b=-時,求與a的值;
(2)當 x 1,c 6a 時,P為一次函數(shù) y x4圖象上一點,Q為平面直角坐標系中的一點,若點 A、B、P、Q 為一個矩形的四個頂點,請確定點Q的坐標;
(3)當=2c時,試問在正比例函數(shù)y=的圖象上是否存在點M使得△ABM為等邊三角形?判斷并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com