【題目】八年級一班開展了讀一本好書的活動,班委會對學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了小說戲劇散文其他"四個類型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表.
根據(jù)圖表提供的信息.解答下列問題:
(1)_______,_______,_______;
(2)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了戲劇類,現(xiàn)從以上四位同學(xué)中任意選出名同學(xué)參加學(xué)校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的人恰好是乙和丙的概率.
【答案】(1)20,0.1,0.15;(2)見解析,
【解析】
(1)先由散文對應(yīng)的頻數(shù)及其頻率可得總?cè)藬?shù),再用總?cè)藬?shù)乘以小數(shù)對應(yīng)頻率求得其人數(shù)a,用其他人數(shù)除以總?cè)藬?shù)可得b,c的值;
(2)利用樹狀圖法展示所有12種等可能的結(jié)果數(shù),再找出恰好是甲和乙的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1)∵被調(diào)查的總?cè)藬?shù)=10÷0.25=40(人),
∴a=40×0.5=20,
b==0.1
c==0.15
故答案為:20、0.1,0.15;
(2)畫樹狀圖,如圖所示:
…………
所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,
∴P(丙和乙)=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)了統(tǒng)計(jì)知識后,小明的數(shù)學(xué)老師要求每個學(xué)生就本班同學(xué)的上學(xué)方式進(jìn)行一次調(diào)查統(tǒng)計(jì),如圖是小明通過收集數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖. 請根據(jù)圖中提供的信息,解答下列問題:
(1)該班共有_______________名學(xué)生;
(2)將“騎自行車”部分的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中;求出“乘車”部分所對應(yīng)的圓心角的度數(shù);
(4)若全年級有600名學(xué)生,試估計(jì)該年級騎自行車上學(xué)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從點(diǎn)發(fā)出一束光,經(jīng)x軸反射,過點(diǎn),則這束光從點(diǎn)A到點(diǎn)B所經(jīng)過的路徑的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.
(1)求證:AD平分∠BAC;
(2)若DF∥AB,則BD與CD有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,O為對角線AC的中點(diǎn),點(diǎn)P、Q分別從A和B兩點(diǎn)同時出發(fā),在邊AB和BC上勻速運(yùn)動,并且同時到達(dá)終點(diǎn)B、C,連接PO、QO并延長分別與CD、DA交于點(diǎn)M、N.在整個運(yùn)動過程中,圖中陰影部分面積的大小變化情況是( )
A. 一直增大 B. 一直減小 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=5,點(diǎn)E、F是正方形ABCD內(nèi)的兩點(diǎn),且AE=FC=3,BE=DF=4,則EF的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣5,0)和點(diǎn)B(1,0).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)點(diǎn)P是拋物線上A、D之間的一點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,PG⊥y軸,交拋物線于點(diǎn)G,過點(diǎn)G作GF⊥x軸于點(diǎn)F,當(dāng)矩形PEFG的周長最大時,求點(diǎn)P的橫坐標(biāo);
(3)如圖2,連接AD、BD,點(diǎn)M在線段AB上(不與A、B重合),作∠DMN=∠DBA,MN交線段AD于點(diǎn)N,是否存在這樣點(diǎn)M,使得△DMN為等腰三角形?若存在,求出AN的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=8厘米,AC=16厘米,點(diǎn)P從A出發(fā),以每秒2厘米的速度向B運(yùn)動,點(diǎn)Q從C同時出發(fā),以每秒3厘米的速度向A運(yùn)動,其中一個動點(diǎn)到端點(diǎn)時,另一個動點(diǎn)也相應(yīng)停止運(yùn)動,設(shè)運(yùn)動的時間為t.
⑴用含t的代數(shù)式表示:AP= ,AQ= .
⑵當(dāng)以A,P,Q為頂點(diǎn)的三角形與△ABC相似時,求運(yùn)動時間是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com