【題目】如圖,從點發(fā)出一束光,經(jīng)x軸反射,過點,則這束光從點A到點B所經(jīng)過的路徑的長為________.

【答案】

【解析】

先過點BBDx軸于D,再由AB的坐標確定,即可得OA,BD,OD的長度,由題意可證得△AOC∽△BDC,根據(jù)相似三角形的對應(yīng)邊成比例,即可求解.

解:如圖,

過點BBDx軸于D

A0,2),B53),

OA=2BD=3,OD=5,

由反射定律可得:∠ACO=BCD,

又∵∠AOC=BDC=90°

∴△AOC∽△BDC,

OABD=OCDC=ACBC=23

∴OC=2,OD=3

Rt△BCD中,CD=3,BD=

∴BC=

∵ACBC=23

∴AC=

∴AC+BC=5

..故選:5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在AC上的一點,分別切于點,與AC相交于點E,連接BO.

求證:

,則______,______;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,△ABC為等邊三角形,點D、E分別為邊AB、AC上的一點,將圖形沿線段DE所在的直線翻折,使點A落在BC邊上的點F處求證:;

2)如圖2,按圖1的翻折方式,若等邊△ABC的邊長為4,當時,求的值;

3)如圖3,在中,,點DAB邊上的中點,在BC的下方作射線BE,使得,點P是射線BE上一個動點,當,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R)隨溫度t)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10上升到30的過程中,電阻與溫度成反比例關(guān)系,且在溫度達到30時,電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1,電阻增加

(1)求當10≤t≤30時,Rt之間的關(guān)系式;

(2)求溫度在30℃時電阻R的值;并求出t≥30時,Rt之間的關(guān)系式;

(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時,發(fā)熱材料的電阻不超過6 kΩ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蘋果生產(chǎn)基地,用30名工人進行采摘或加工蘋果 ,每名工人只能做其中一項工作.蘋果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4 000元;加工成罐頭出售每噸獲利10 000元.采摘的工人每人可采摘蘋果0.4噸;加工罐頭的工人每人可加工0.3噸.設(shè)有x名工人進行蘋果采摘,全部售出后,總利潤為y元.

(1)yx的函數(shù)關(guān)系式;

(2)如何分配工人才能獲利最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、C在反比例函數(shù)y=的圖象上,點B,D在反比例函數(shù)y=的圖象上,a>b>0,AB∥CD∥x軸,AB,CD在x軸的兩側(cè),AB=,CD=,AB與CD間的距離為6,則a﹣b的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC,BC分別與⊙O交于點D,E,則下列說法一定正確的是( 。

A.連接BD,可知BD是△ABC的中線B.連接AE,可知AE是△ABC的高線

C.連接DE,可知D.連接DE,可知SCDESABCDEAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級一班開展了讀一本好書的活動,班委會對學(xué)生閱讀書籍的情況進行了問卷調(diào)查,問卷設(shè)置了小說戲劇散文其他"四個類型,每位同學(xué)僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表.

根據(jù)圖表提供的信息.解答下列問題:

1_______,_______,_______;

2)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了戲劇類,現(xiàn)從以上四位同學(xué)中任意選出名同學(xué)參加學(xué)校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究函數(shù)y=x+(x>0)與y=x+(x>0,a>0)的相關(guān)性質(zhì).

(1)小聰同學(xué)對函數(shù)y=x+(x>0)進行了如下列表、描點,請你幫他完成連線的步驟;觀察圖象可得它的最小值為   ,它的另一條性質(zhì)為   ;

x

1

2

3

y

2

(2)請用配方法求函數(shù)y=x+(x>0)的最小值;

(3)猜想函數(shù)y=x+(x>0,a>0)的最小值為   

查看答案和解析>>

同步練習(xí)冊答案