精英家教網 > 初中數學 > 題目詳情

【題目】已知y33x+2正比例,且x=2時,y=5

1)求yx之間的函數關系式,并指出它是什么函數;

2)點(46)是否在這個函數的圖象上.

【答案】1,yx的一次函數;(2)點(4,6)不在此函數圖象上

【解析】

1)因為y33x+2正比例,可設y3=k(3x+2),又x2時,y5,根據待定系數法可以求出解析式,從而判斷yx的函數關系;

2)把x4代入函數解析式,將求出的對應的y值與6比較,即可知道是否在這個函數的圖象上.

解: (1)y3=k(3x+2),

x=2,y=5代入得53=k(6+2),解得

所以y3= (3x+2),

所以 yx的一次函數;

(2)x=4時,

,所以點(4,6)不在此函數圖象上.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】中考低于測試前,某區(qū)教育局為了了解選報引體向上的九年級男生的成績情況,隨機抽查了本區(qū)部分選報引體向上項目的九年級男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖.

請你根據圖中的信息,解答下列問題:

Ⅰ)寫出扇形圖中a=  %,本次抽測中,成績?yōu)?/span>6個的學生有  名.

Ⅱ)求這次抽測中,測試成績的平均數,眾數和中位數;

Ⅲ)該區(qū)體育中考選報引體向上的男生共有1800人,如果體育中考引體向上達6個以上(含6個)得滿分,請你估計該區(qū)體育中考選報引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖ABC,ABC=45°,AB=BC,CDABDBE平分∠ABC,且BEACE,與CD相交于點F.HBC邊的中點,連接DHBE相交于點G,

(1)求證BF=AC;

(2)求證CE=BF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC,A=m°,ABC和∠ACD的平分線交于點A1,得∠A1,A1BC和∠A1CD的平分線交于點A2得∠A2A2 017BC和∠A2 017CD的平分線交于點A2 018,則∠A2 018_____度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,AB=2,∠ABC=30°,點E是射線DA上一動點,把△CDE沿CE折疊,其中點D的對應點為點D′,若CD′垂直于菱形ABCD的邊時,則DE的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設備,現有甲、乙兩種型號的設備可供選購. 經調查:購買3臺甲型設備比購買2臺乙型設備多花16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.

(1)求甲、乙兩種型號設備的價格;

(2)該公司經預算決定購買節(jié)省能源的新設備的資金不超過110萬元,你認為該公司有哪幾種購買方案;

(3)在(2)的條件下,已知甲型設備的產量為240噸/月,乙型設備的產量為180噸/月.若每月要求總產量不低于2040噸,為了節(jié)約資金,請你為該公司設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知為等邊三角形,的高,延長,使,連接,則__________,__________。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數且abc≠0)與直線l都經過y軸上的同一點,且拋物線的頂點在直線l上,則稱拋物線L與直線l具有一帶一路關系,并且將直線1叫做拋物線L路線,拋物線L叫做直線l帶線

(1)若路線”l的表達式為y=2x﹣4,它的帶線”L的頂點的橫坐標為﹣1,求帶線”L的表達式;

(2)如果拋物線y=2x2﹣4x+1與直線y=nx+1具有一帶一路關系,如圖,設拋物線與x軸的一個交點為A,與y軸交于點B,其頂點為C.

△ABC的面積;

y軸上是否存在一點P,使SPBC=SABC,若存在,直接寫出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】關于二次函數,以下結論:①拋物線交軸有兩個不同的交點;②不論取何值,拋物線總是經過一個定點;③設拋物線交軸于、兩點,若,則;④拋物線的頂點在圖象上;⑤拋物線交軸于點,若是等腰三角形,則,.其中正確的序號是(

A. ①②⑤ B. ②③④ C. ①④⑤ D. ②④

查看答案和解析>>

同步練習冊答案