【題目】如圖,四邊形ABCD是菱形,AB=2,∠ABC=30°,點(diǎn)E是射線DA上一動(dòng)點(diǎn),把△CDE沿CE折疊,其中點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)D′,若CD′垂直于菱形ABCD的邊時(shí),則DE的長為_____

【答案】22﹣22+2.

【解析】

分情況進(jìn)行討論:

①當(dāng)D'C⊥AD時(shí),如圖1,根據(jù)30度的余弦列式可得DE的長;

②當(dāng)CD'⊥AB時(shí),如圖2,過EEF⊥CDF,設(shè)CF=EF=x,則ED=2x,DF=x,根據(jù)CD=CF+DF=2,列方程可得DE的長;

③當(dāng)CD'⊥BC時(shí),延長D'CADF,分別計(jì)算EFDF的長,可得DE的長;

④當(dāng)D'C⊥CD時(shí),如圖4,延長D'CDEF,分別計(jì)算EFDF的長,可得DE的長.

4種情況:

①當(dāng)D'CAD時(shí),如圖1,設(shè)DE=D'E=x,

由折疊得:CD=CD'=2,

∵四邊形ABCD是菱形,

∴∠D=B=30°,

∴∠D=D'=30°

RtCFD中,CF=CD=1,

D'F=CD'-CF=2-1=1,

RtD'FE中,cos30°=,

DE=D'E=;

②當(dāng)CD'AB時(shí),如圖2,過EEFCDF,

ABCD,

∴∠B+BCD=180°

∵∠B=30°,

∴∠BCD'=60°,DCD'=150°-60°=90°,

由折疊得∠ECD=DCD'=45°,

∴△ECF是等腰直角三角形,

設(shè)CF=EF=x,則ED=2x,DF=x,

CD=CF+DF=2,

x+x=2,

x=-1,

DE=2x=2-2;

③當(dāng)CD'BC時(shí),如圖3,延長D'CADF,則D'CED,

RtCFD中,∠D=30°,CD=2,

CF=1,DF=,

RtD'EF中,D'F=3,D'=30°,

EF=,

DE=EF+DF=2;

④當(dāng)D'CCD時(shí),如圖4,延長D'CDEF,

∵∠DCD'=90°

∴∠FCD=90°,

CD=2,FDC=30°,

CF=,DF=2FC=,

由折疊得:∠ECD=ECD'==135°,

∴∠DEC=D'EC=15°,

∴∠FEB=FD'E=30°,

EF=D'F=+2,

DE=EF+DF=2+2,

綜上所述,DE的長為22-22+2.

故答案為22-22+2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCDCB中,∠A=∠D90°ACBD,ACBD相交于點(diǎn)O,限用無刻度直尺完成以下作圖:

1)在圖1中作線段BC的中點(diǎn)P;

2)在圖2中,在OB、OC上分別取點(diǎn)E、F,使EFBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OA=2OB=4,以A點(diǎn)為頂點(diǎn)、AB為腰在第三象限作等腰RtABC,

(1)C點(diǎn)的坐標(biāo);

(2)如圖2,Py軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)P點(diǎn)向y軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以P為頂點(diǎn),PA為腰作等腰RtAPD,過DDEx軸于E點(diǎn),求OPDE的值;

(3)如圖3,已知點(diǎn)F坐標(biāo)為(2,2),當(dāng)Gy軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),RtFGH,始終保持∠GFH=90,FGy軸負(fù)半軸交于點(diǎn)G(0,m),FHx軸正半軸交于點(diǎn)H(n,0),當(dāng)G點(diǎn)在y軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),以下兩個(gè)結(jié)論:①mn為定值;②m+n為定值,其中只有一個(gè)結(jié)論是正確的,請(qǐng)找出正確的結(jié)論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+b的圖象經(jīng)過點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1

1)求kb的值;

2)請(qǐng)直接寫出不等式kx+b3xx的范圍.

3)若點(diǎn)Dy軸上,且滿足SBCD2SBOC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊ABC中,AB=3,點(diǎn)O在AB的延長線上,OA=6,且AOE=30°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒個(gè)單位的速度沿射線OE方向運(yùn)動(dòng),以P為圓心,OP為半徑作P,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿折線B…C…A向點(diǎn)A運(yùn)動(dòng),Q與A重合時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)P的運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)POB是直角三角形時(shí),求t的值;

(2)當(dāng)P過點(diǎn)C時(shí),求P與線段OA圍成的封閉圖形的面積;

(3)當(dāng)P與ABC的邊所在直線相切時(shí),求t的值;

(4)當(dāng)線段OQ與P只有一個(gè)公共點(diǎn)時(shí),直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y33x+2正比例,且x=2時(shí),y=5

1)求yx之間的函數(shù)關(guān)系式,并指出它是什么函數(shù);

2)點(diǎn)(4,6)是否在這個(gè)函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察表格,然后回答問題:

(1)表格中x= ;y= .

(2)從表格中探究a數(shù)位的規(guī)律,并利用這個(gè)規(guī)律解決下面兩個(gè)問題:

①已知≈3.16, ;

②已知=8.973,=897.3,用含m的代數(shù)式表示b,b= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是邊長為4的等邊三角形,邊AB在射線OM上,且OA=6,點(diǎn)D是射線OM上的動(dòng)點(diǎn),當(dāng)點(diǎn)D不與點(diǎn)A重合時(shí),將△ACD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)60°得到△BCE,連接DE.

(1)如圖1,猜想:△CDE的形狀是   三角形.

(2)請(qǐng)證明(1)中的猜想

(3)設(shè)OD=m,

當(dāng)6<m<10時(shí),△BDE的周長是否存在最小值?若存在,求出△BDE周長的最小值;若不存在,請(qǐng)說明理由.

是否存在m的值,使△DEB是直角三角形,若存在,請(qǐng)直接寫出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊三角形ABC的邊長為4 cm,點(diǎn)D從點(diǎn)C出發(fā)沿CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)E從點(diǎn)B出發(fā)沿AB的延長線BF向右運(yùn)動(dòng),已知點(diǎn)D,E都以每秒 cm的速度同時(shí)開始運(yùn)動(dòng),運(yùn)動(dòng)過程中DEBC相交于點(diǎn)P.

(1).當(dāng)點(diǎn)D,E運(yùn)動(dòng)多少秒后,△ADE為直角三角形?

(2)在點(diǎn)D,E運(yùn)動(dòng)時(shí),線段PD與線段PE相等嗎?如果相等,予以證明;如不相等,說明理由.

查看答案和解析>>

同步練習(xí)冊答案